

Mystique: **Deconstructing SVG Charts for Layout Reuse**

Chen Chen Bongshin Lee

Yunhai Wang

Yunjeong Chang

Zhicheng Liu

Online Galleries Provide Reusable Examples

Data Illustrator, CHI 2018

Re-purposing Visualizations is Still Challenging

Decompose and Reuse Charts

								GRO		1 (dote)	2 Jahol					~		
5		PLE D	3 D		ונ					GNU	UP	(uots c		15)	ы.			Gr
							38			Subj	ect	College	GPA	snape	a	coniD		
							0.0	3	1	MAI	н	SCI	2.6	<circle></circle>	L	38		M
	4.0 ¬					3.2				CSEE		SCI	2.1	<circle></circle>	L	40		C
		21								MEN	G	SCI	2.4	<circle></circle>	L	42		M
		2.0			24					COM	IM	ном	3.2	<rect></rect>	L	44		0
	3.0 -		2	.1						ANT	Н	HUM	3.8	<rect></rect>	L	46		AI
										PHIL		HUM	3.4	<rect></rect>	L	48		PI
										MAT	н.	SCI	2.6	<text></text>	L	39		M
	2.0 -		1							CSEE		SCI	2.1	<text></text>	L	41		- C:
										MEN	G	SCI	2.4	<text></text>	L	43		
										COM	IM	HUM	3.2	<text></text>	L	45		
	1.0 -									ANT	н	HUM	3.8	<text></text>	L	46		
										PHIL		HUM	3.4	<text></text>	Ι.	49		PI
	00									Subi	iect	$\xrightarrow{c} xPos$	deco	onID 🔤	+ xF	os		
	0.0 +		~		FNIC					GPA	$\stackrel{c}{\rightarrow}$	xPos	deco	onID 😔	⊧ yF	os	HAH	P
		MATH	C	DEE M	ENG	COMM	ANTH	PI	HIL									
			DAT	A ENCO	DING	MARKS							X-A	XIS (DI	sc	RETE)		
¢	ROUP	1 (dots)				GROUP	2 (dot la	abels)			- 1	LABELS	GROU	IP	т	ICKS GF	ROUP	
	Subject	College	GPA	shane	0	Subject	College	GPA	shane	0		Subject	shape	0		Subject	shape	0
	маты	sci	26	sindpe	1		sci	26	stoute	1		MAATU	<toyt></toyt>	1		MAATU	- انہ م	1
	CSEE	SCI	2.0	circles	2	CSEE	sci	2.0	<text></text>	2		CCEE	<text></text>	2		CSEE	line>	2
	MENG	sci	2.1	<circle></circle>	3	MENIC	SCI	2.1	<text></text>	3		CSEE	<text></text>	2		LSEE	line>	2
	COMM		2.7	<reet></reet>	4	COMMA		2.4	<text></text>	4		COMM	<toxt></toxt>			COMMA		
			2.2	<reet></reet>	4	ANITH	HUM	2.0	<text></text>	-4			<text></text>	4			line>	1
		HUM	2.4	<reet></reet>	5	ANTE	HUM	2.0	<text></text>	5		ANTH	stext	5		ANTE	line>	2
	PHIL	HUM	3.4	Ciects	0	PHIL	HUM	3.4	<text></text>	6		PHIL	<text></text>	6		PHIL	<ine></ine>	6
	$GPA \rightarrow$	yPos [0.0,4	4.0]		$GPA \xrightarrow{L}$	yPos [0	0.0, 4	.0]			0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	xPos			O	xPos	
	$O_{x^{\rho_{0S}}} \xrightarrow{O}$	xPos				<u>></u> >	xPos					Subject	$t \xrightarrow{\tau} te$	xt				
	College	$e \xrightarrow{c} sha$	pe			$\text{GPA} \xrightarrow{\tau}$	text											
	College	$e \xrightarrow{c} fill-i$	color															

D3 Deconstructor, TVCG 2018

GROUF	2 (x-ax	is)	GROUP 3	(y-axi	s)		
string	shape	deconID	number	shape	deconID		
MATH	<text></text>	3	4.0	<text></text>	15		
CSEE	<text></text>	5	3.0	<text></text>	17		
MENG	<text></text>	7	2.0	<text></text>	19		
COMM	<text></text>	9	1.0	<text></text>	21		
ANTH	<text></text>	11	0.0	<text></text>	23		
PHIL	<text></text>	13	4.0	<line></line>	16		
MATH	<line></line>	4	3.0	line>	18		
CSEE	<line></line>	6	2.0	<line></line>	20		
MENG	<line></line>	8	1.0	<line></line>	22		
COMM	<line></line>	10	0.0	line>	24		
ANTH	<line></line>	12	num -	→ yPos			
PHIL	<line></line>	14					
PER & AGRAWALA'S DECONSTRUCTION							

Y-AXIS (CONTINUOUS)									
ABELS GROUP TICKS GROUP									
number	shape	number	shape						
4.0	<text></text>	4.0	<line></line>						
3.0	<text></text>	3.0	line>						
2.0	<text></text>	2.0	line>						
1.0	<text></text>	1.0	line>						
0.0	<text></text>	0.0	<line></line>						
num └→ yPos [0.0, 4.0] num └→ yPos [0.0, 4.0] num [⊥] → text									

OUR DECONSTRUCTION

ChartReuse, TVCG 2022

Decompose and Reuse Charts Limitations

EXAMPLE D3 DOT PLOT

	Subj	ect	College	GPA	s	hape	de	econID		string	, s	hape	de	cor
	MATH	н	SCI	2.6	<0	ircle>	Г	38		MATH	<1	text>	3	
	CSEE		SCI	2.1	<0	ircle>		40		CSEE	<1	text>	5	
	MEN	G	SCI	2.4	<0	ircle>		42		MENG	<1	text>	7	
	COM	М	HUM	3.2	<	rect>		44		COMN	1 <1	text>	9	
	ANTH	н	HUM	3.8	<	rect>		46		ANTH	<1	text>	1	1
	PHIL		HUM	3.4	<	rect>		48		PHIL	<1	text>	1	3
	MATH	н	SCI	2.6	<1	text>		39		MATH	<	line>	4	
	CSEE		SCI	2.1	<1	text>		41		CSEE	<	line>	6	
	MEN	G	SCI	2.4	<1	text>		43		MENG	<	line>	8	
	COM	М	HUM	3.2	<1	text>		45		COWN	1 <	line>	1	0
	ANT	н	HUM	3.8	<1	text>		46		ANTH	<	line>	1	2
	PHIL		HUM	3.4	<1	text>		49		PHIL	<	line>	1	4
	$GPA \rightarrow xPos \qquad deconID \rightarrow yPos \qquad HARPER & AGR.$								AV	ν <i>ι</i>				
		1	LABELS	GRO	UF	•	т	ICKS GI	ROUP		L	ABE	LS C	GR
	O		Subject	shap	be	O POS		Subject	shape	O xPos		numb	per	sh
2	1		MATH	<tex< td=""><td>t></td><td>1</td><td></td><td>MATH</td><td><line></line></td><td>1</td><td></td><td>4.0</td><td></td><td><t< td=""></t<></td></tex<>	t>	1		MATH	<line></line>	1		4.0		<t< td=""></t<>
>	2		CSEE	<text< td=""><td>t></td><td>2</td><td></td><td>CSEE</td><td><line></line></td><td>2</td><td></td><td>3.0</td><td></td><td><t< td=""></t<></td></text<>	t>	2		CSEE	<line></line>	2		3.0		<t< td=""></t<>
-	3		MENG	<tex< td=""><td>t></td><td>3</td><td></td><td>MENG</td><td>ine></td><td>3</td><td></td><td>2.0</td><td></td><td><t< td=""></t<></td></tex<>	t>	3		MENG	ine>	3		2.0		<t< td=""></t<>
>	4		COMM	<text< td=""><td>t></td><td>4</td><td></td><td>COMM</td><td><line></line></td><td>4</td><td></td><td>1.0</td><td></td><td><t< td=""></t<></td></text<>	t>	4		COMM	<line></line>	4		1.0		<t< td=""></t<>
>	5		ANTH	<tex< td=""><td>t></td><td>5</td><td></td><td>ANTH</td><td><line></line></td><td>5</td><td></td><td>0.0</td><td></td><td> <t< td=""></t<></td></tex<>	t>	5		ANTH	<line></line>	5		0.0		<t< td=""></t<>
>	6		PHIL	<tex< td=""><td>t></td><td>6</td><td></td><td>PHIL</td><td><line></line></td><td>6</td><td></td><td>num</td><td>\rightarrow</td><td>yР</td></tex<>	t>	6		PHIL	<line></line>	6		num	\rightarrow	yР
	$O_{syss} \xrightarrow{\oplus} xPos$ $O_{spes} \xrightarrow{\oplus} xPos$ num $ ta$ Subject $$ text							te						

GROUP	• 2 (x-ax	is)	GROUP 3 (y-axis)				
string	shape	deconID	number	shape	deconID		
MATH	<text></text>	3	4.0	<text></text>	15		
CSEE	<text></text>	5	3.0	<text></text>	17		
MENG	<text></text>	7	2.0	<text></text>	19		
сомм	<text></text>	9	1.0	<text></text>	21		
ANTH	<text></text>	11	0.0	<text></text>	23		
PHIL	<text></text>	13	4.0	<line></line>	16		
MATH	<line></line>	4	3.0	<line></line>	18		
CSEE	<line></line>	6	2.0	<line></line>	20		
MENG	<line></line>	8	1.0	<line></line>	22		
сомм	<line></line>	10	0.0	line>	24		
ANTH	<line></line>	12	num 占	→ yPos			
PHIL	<line></line>	14					

CROUR 2 (1 auto)

ALA'S DECONSTRUCTION

			Y-AXIS (CONTI	NUOUS)							
OUP		LABELS	GROUP T	TICKS GROUP							
shape	0 _{xPos}	number	shape	number	shape						
<line></line>	1	4.0	<text></text>	4.0	<line></line>						
<line></line>	2	3.0	<text></text>	3.0	<line></line>						
<line></line>	3	2.0	<text></text>	2.0	<line></line>						
<line></line>	4	1.0	<text></text>	1.0	line>						
line>	5	0.0	<text></text>	0.0	<line></line>						
<line></line>	6	num 🕂	yPos [0.0, 4.0]	num →	yPos [0.0, 4.0						
Pos		num>	• text								
	OUR DECONSTRUCTION										

D3 Deconstructor, TVCG 2018

GROUP 1 (dots & labels)

- D3 charts
- Basic chart types

ChartReuse, TVCG 2022

- PowerPoint infographics
- Glyph-based bar charts

Decompose and Reuse Charts Our Aim

D3 Deconstructor, TVCG 2018

- D3 charts
- Basic chart types

ChartReuse, TVCG 2022

- PowerPoint infographics
- Glyph-based bar charts

Scope on SVG Charts for Layout Reuse

An Investigation into the Beagle Dataset

Mark	Chart	Percentage	
Rectangle	bar chart (histogram), grouped bar chart, stacked bar chart, diverg- ing bar chart (pyramid chart), Marimekko chart, heatmap, bullet chart, treemap, waffle chart, waterfall chart, range chart, gantt chart, matrix chart, cartogram, calendar chart	32.85%	
 Line	line graph, parallel coordinates, Kagi chart	30.51%	
Pie	pie chart, donut chart	16.50%	
Circle	scatter plot, bubble plot, dot plot, circle packing	14.96%	
Others	geographic map, area chart, stream graph, chord chart, hexbin plot, Sankey diagram, Voronoi diagram, word cloud, sunburst chart, boxplot, network diagram, contour plot, radial plot	5.18%	

VIS 2023

Question 1 Question 2 Question 3 Question 4 Question 6 Question 7 Question 7 Question 8 Question 7 Question 8 Question 7 Question 8 Question 7 Question 8 Question 7 Question 7 Question 8 Question 7 Question 7		GREC-based Chart Decomposition	.}, :{}, []
Encodings:	Channel	Condition	
	fill	rectangles in the chart content have different fill colors	
	area	lowest-level spatial relationship is packing	
	width/height	lowest-level spatial relationship is grid or stack, and rectan- gles have varying widths/heights	
	x/y	lowest-level spatial relationship is a one-directional grid without the gravity parameter	
Constraints:	alignmentcustomize	t constraint within a glyph (e.g., bullet charts) ed alignment of stacked rectangles in a grid relationship	

Quantitative Study - Dataset

We contribute a diverse SVG chart corpus of size 150 to develop and evaluate our approach.

Quantitative Study - Dataset

We contribute a diverse SVG chart corpus of size 150 to develop and evaluate our approach.

Life expectancy group

below 60

above 60

VIS 2023

Quantitative Study - Statistical Results

- 86.67%, 85.33%, and 90.67% accuracy on the <u>x-axis</u>, <u>y-axis</u>, and <u>legend</u> inference
- 96.19% (101/105) accuracy on the training set and 95.56% (43/45) accuracy on the test set, for the <u>layout decomposition</u>

User Study - Overview

User Study - Statistical Results

Task Completion and Time:

Task	# Successes	Average Time (minutes)	Standard Deviation	_
1	11	2.87	1.62	
2	11	4.35	2.47	
3	11	2.86	2.40	
4	10	4.96	2.20	

5-point Likert scale (1: "Strongly Disagree" to 5:"Strongly Agree"):

•	I felt that the system was an efficient way to author visualization designs.	Mean: 3.92, Std: 1.04
•	I was able to conveniently accommodate the changes that I want to achieve during my task with the system.	Mean: 4.58, Std: 0.49
•	I felt comfortable and confident using the system after receiving the basic training provided to me.	Mean: 4.25, Std: 1.01

User Study - Feedback

Usability, Convenience, and Confidence

"Mystique gives a response after each step so I know whether I am on the right track, while in Python I cannot imagine what chart I am getting when writing codes there."

Not Clear Instructions and Insufficient flexibility

"It was hard to find what [the terms] meant exactly (top side, bottom side, height, etc.)."

"one improvement could be to allow more flexibility; for instance, currently there is no option for selecting the color used in the chart."

Research Opportunities

- Reuse <u>composite</u> visualizations involving superimposition juxtaposition, overloading, and nesting
- Identify and adapt **<u>algorithmic layouts</u>**
- Human-in-the-loop handling of chart <u>deconstruction errors</u>
- Generalize to larger chart corpora composed with more shape types

Contact: cchen24@umd.edu

