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In this paper we present a novel analysis of variance Gaussian process (ANOVA-GP) em-
ulator for models governed by partial differential equations (PDEs) with high-dimensional 
random inputs. The Gaussian process (GP) is a widely used surrogate modeling strategy, 
but it can become invalid when the inputs are high-dimensional. In this new ANOVA-GP 
strategy, high-dimensional inputs are decomposed into unions of local low-dimensional in-
puts, and principal component analysis (PCA) is applied to provide dimension reduction for 
each ANOVA term. We then systematically build local GP models for PCA coefficients based 
on ANOVA decomposition to provide an emulator for the overall high-dimensional prob-
lem. We present a general mathematical framework of ANOVA-GP, validate its accuracy and 
demonstrate its efficiency with numerical experiments.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

During the last few decades there has been a rapid development in surrogate modeling for computational models gov-
erned by stochastic partial differential equations (PDEs). This explosion in interest has been driven by practical applications 
including uncertainty quantification, shape and topological optimizations, and Bayesian inversions. In these applications, re-
peated simulations for parameterized PDE systems are demanded. High-fidelity numerical schemes, which are also referred 
to as the simulators, can give accurate predictions for the outputs of these PDE systems, e.g., the finite element meth-
ods with a posteriori error bounds [1,2]. However, the simulators are typically computationally expensive, especially when 
modeling complex science and engineering problems. In order to reduce the costs in these many-query problems of compu-
tational models, cheap surrogate models which are also called emulators, are actively developed to replace the simulators. 
These include Gaussian process (GP) emulators [3–6], (generalized) polynomial chaos surrogates [7–10] and reduced basis 
methods [11–14].

The original GP emulator is to model the system output by a Gaussian process indexed by input parameters [4], which 
limits its application to high-dimensional problems. In general, the computational models governed by stochastic PDEs have 
high-dimensional inputs and outputs. There are always a large number of input parameters, when modeling complex prob-
lems, for example, models with inputs described by rough random processes with short correlation lengths. The standard 
outputs of the PDE systems are the spatial fields, and when a fine resolution representation is required, the outputs need to 
be high-dimensional to capture detailed local information. This kind of high-dimensional problems currently gains a lot of 
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interests, and new GP emulators are actively developed. These new GP methods usually focus on either a high-dimensional 
input space or a high-dimensional output space, and propose dimension reduction techniques for the corresponding high-
dimensional space. In [15], principal component analysis (PCA) is applied to the output space to result in an efficient GP 
emulator for models with high-dimensional outputs. In [16,17], novel kernel principal component analysis is developed to 
perform dimension reduction for the output space. In addition, an active data selection method is developed to build GP 
surrogates for PCA coefficients in [18]. For problems with high-dimensional inputs, GP models with built-in active subspace 
dimension reduction are proposed in [19].

We focus on the challenging situation that both inputs and outputs are high-dimensional. A main challenge here is that 
difficulties caused by high-dimensional inputs and outputs are typically coupled. As discussed in [12], high-dimensional 
inputs can lead to large ranks in the output space, and direct PCA for the output space can consequently become inefficient. 
To decouple the difficulties, we propose a novel analysis of variance (ANOVA) based Gaussian process method (ANOVA-GP). 
In this ANOVA-GP emulator, the high-dimensional parameter space is decomposed into a union of low-dimensional spaces 
through an adaptive ANOVA procedure. PCA is conducted locally on ANOVA terms associated with these low-dimensional 
parameter spaces. After that, local GP models are built for PCA coefficients. Since the local inputs are low-dimensional, effi-
cient PCA can be achieved and a small number of training data points are required to result in accurate local GP models. In 
addition, we note that a Bayesian smoothing spline ANOVA Gaussian process framework is developed for model calibration 
with categorical parameters [20], but the novelty of our ANOVA-GP lies on adaptive construction procedures for hierarchical 
GP models for high-dimensional (noncategorical) parameters.

An outline of the rest of the paper is as follows. Section 2 sets the problem, and section 3 gives a detailed discussion 
of the ANOVA decomposition. In section 4, we first discuss PCA for each ANOVA term and active training for each local 
GP model, and next present our novel overall ANOVA-GP emulator. Numerical results are discussed in section 5. Section 6
concludes the paper.

2. Problem setting

Let D denote a physical domain (in R2 or R3) which is bounded, connected and with a polygonal boundary ∂ D . Suppose 
ξ = [ξ1, . . . , ξm]T is a m-dimensional vector which collects a finite number of independent random variables and the prob-
ability density function of ξ is denoted by π(ξ). Without loss of generality, we further assume that ξ has a bounded and 
connected support Im , where I is a real closed interval. In this paper, we consider physical problems governed by PDEs over 
the physical domain D and boundary conditions on the boundary ∂ D , which can be stated as: find a stochastic function 
usol(x, ξ) : D × Im →R, such that

L (x, ξ ; usol (x, ξ)) = f (x, ξ) ∀ (x, ξ) ∈ D × Im, (1)

B (x, ξ ; usol (x, ξ)) = g (x, ξ) ∀ (x, ξ) ∈ ∂ D × Im, (2)

where L is a partial differential operator and B is a boundary operator, both of which can have random coefficients. Given a 
realization of ξ which is denoted by ξ ( j) ( j ∈N), a simulator (e.g., the finite element method [2]) can provide approximate 
values of usol(x, ξ) on given physical grid points, which result in a high-dimensional output. We denote this output as

y( j) := u
(
ξ ( j)

)
:=

[
usol

(
x(1), ξ ( j)

)
, . . . , usol

(
x(d), ξ ( j)

)]T ∈Rd, (3)

where d is the number of grid points (or the finite element degrees of freedom) and x(k), k = 1, . . . , d are the locations of 
the grid points. Letting O ⊂Rd denote the manifold consisting of u (ξ) associated with all realizations of ξ , a simulator can 
be viewed as a mapping χ : Im → O. The inputs and the outputs of χ are both high-dimensional in this general setting, 
which causes difficulties for applying traditional GP methods. For this purpose, we in this work provide a novel ANOVA-
GP surrogate for χ , where ANOVA decomposition is conducted to decompose the high-dimensional inputs into a union of 
low-dimensional local inputs. For each local input, PCA is applied to result in a reduced dimensional representation of the 
corresponding local output. After that, local GP models are built for the PCA coefficients. The next section is to review the 
ANOVA decomposition following the presentation in [21–27], while PCA for the outputs and our overall ANOVA-GP strategy 
are presented in section 4.

3. ANOVA decomposition

Let P be the set consisting of coordinate indices {1, 2, . . . , m}. Any non-empty subset t ⊆ P is referred to as an ANOVA 
index, and the elements of t are sorted in ascending order, while its cardinality is denoted by |t|. For a given t , let ξt denote 
a |t|-dimensional vector that includes components of the vector ξ ∈ Im indexed by t . For example, if t = {1, 3, 4}, then |t| = 3
and ξt = [ξ1, ξ3, ξ4]T ∈ I3. Letting dμ denote a given probability measure on Im , the ANOVA decomposition of the simulator 
output u(ξ) of the problem (1)–(2) can be expressed as

u (ξ) =
∑

ut (ξt) . (4)

t⊆P
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In (4), each term on the right hand side is defined recursively through

ut (ξt) =
∫

Im−|t|

u (ξ) dμ
(
ξP\t

) −
∑
w⊂t

uw (ξw) , (5)

starting with

u∅ =
∫
Im

u (ξ)dμ(ξ) , (6)

where dμ 
(
ξP\t

) := ∏
i∈P\t dμ (ξi), since {ξi}m

i=1 are assumed to be independent. Note that u(ξ) is a vector and integrals 
involving them (e.g., (5) and (6)) are defined componentwise. In this paper, we call ut (ξt) a |t|-th order ANOVA term and t
a |t|-th order index.

When the ordinary Lebesgue measure is used in (5)–(6), (4) is referred to as the classic ANOVA decomposition, and each 
expansion term is

ut (ξt) =
∫

Im−|t|

u (ξ)
∏

i∈P\t

dξi −
∑
w⊂t

uw (ξw) , (7)

and

u∅ =
∫
Im

u (ξ)dξ. (8)

Computing each term (7) in the classic ANOVA decomposition requires computing integrals over Im−|t| . When |t| is small, 
Im−|t| has a high dimensionality, and computing integrals over it is expensive. To alleviate this difficulty, anchored ANOVA 
methods [28] are developed, and are reviewed as follows.

3.1. Anchored ANOVA decomposition

As discussed in [28,24,26], the idea of anchored ANOVA decomposition is to replace the Lebesgue measure used in 
(7)–(8) by the Dirac measure

dμ(ξ) := δ (ξ − c)dξ =
m∏

i=1

δ (ξi − ci)dξi, (9)

where c = [c1, c2, . . . , cm]T ∈ Im is a given anchor point. With the Dirac measure, each term in (5) is

ut (ξt) = u
(
ξ c,t) −

∑
w⊂t

uw (ξw) , (10)

where the initial term is set to u∅ = u (c) and ξ c,t := [ξ c,t
1 , . . . , ξ c,t

m ]T ∈ Im is defined through

ξ
c,t

i :=
{

ci for i ∈ {1, . . . ,m} \ t
ξi for i ∈ t

. (11)

The anchored ANOVA decomposition expresses the simulator output u(ξ) by the knowledge of its values on lines, planes 
and hyper-planes passing through the anchor point c [21]. Here comes a natural question that how to choose the anchor 
point. Generally, the anchor point can be chosen arbitrarily since the ANOVA decomposition (4) is always exact. However, 
an appropriately chosen anchor point enables the decomposition to give an accurate approximation with a small number of 
expansion terms [28,29], which give computational efficiency (the selection procedure of ANOVA terms is discussed in the 
next section). In [28,29], it is shown that a good choice is the input sample point where the corresponding output sample 
equals or is close to the mean of the output. However, the mean of the output is not given a priori in our setting, and it 
is not trivial to find the input sample point which gives an output sample close to the mean of the output. As shown in 
[30,23], an optimal choice is the mean of the input, and we use this choice of the anchor point for all numerical studies in 
this paper.

It is clear that the whole index set {t | t ⊆P} contains a large number of terms when m is large, and especially, the m-th 
order index t = {1, . . . , m} is included, which causes challenges to compute the right hand side of (4). However, in practical 
computation, not all expansion terms in (4) need to be computed—only low order ANOVA terms are typically considered to 
be active and need to be computed. Denoting a selected index set by J which is a subset of the whole index set {t | t ⊆P}, 
an approximation of the solution u (ξ) is written as
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u (ξ) ≈ uJ (ξ) :=
∑
t∈J

ut (ξt) , (12)

where ut (ξt) is defined in (5). Next, we review the adaptive construction procedure for the index set J following [24].

3.2. Adaptive index construction

For each i = 0, . . . , m, the set consisting of selected i-th order indices is denoted by Ji , while J = ∪m
i=0Ji . For the zeroth 

order index, we set J0 = {∅} and |∅| = 0, and u(c) is computed using a given simulator (e.g., the finite element method). 
Supposing that Ji is known for a given order 0 ≤ i ≤ m − 1, Ji+1 is constructed based on Ji as follows. First, a candidate 
index set Ĵi+1 is constructed as

Ĵi+1 := {
t
∣∣ |t| = i + 1,and any s ⊂ t with |s| = i satisfies s ∈ Ji

}
. (13)

For each t ∈ Ĵi+1, the contribution weight of ut (ξt) is defined as

γt := ‖E (ut (ξt))‖L2∥∥∥∑
s∈J0∪···∪J|t|−1

E (us (ξs))

∥∥∥
L2

, (14)

which measures the relative importance of the index t [24]. In (14), ‖ut(ξt)‖L2 is the functional L2 norm of the approxima-
tion function associated with ut(ξt) (e.g., the finite element approximation function with coefficients defined by ut (ξt) [2]), 
and E (ut (ξt)) denotes the mean function of ut that is defined as

E (ut (ξt)) =
∫
I |t|

ut (ξt)πt (ξt)dξt, (15)

where πt(ξt) is the marginal probability density function of ξt . This mean function can be approximated using the Clenshaw-
Curtis tensor quadrature rule [31,32,26], i.e.,

Ê (ut (ξt)) :=
∑

ξ
(k)
t ∈�t

ut

(
ξ

(k)
t

)
πt

(
ξ

(k)
t

)
w

(
ξ

(k)
t

)
, k = 1,2, . . . , |�t |, (16)

where �t contains the Clenshaw-Curtis tensor quadrature points, {w(ξ
(k)
t )} for k = 1, . . . , |�t | are the corresponding weights, 

and |�t | is the size of �t . After that, the set Ji+1 is formed through the (i + 1)-th order indices with γt ≥ tolindex , i.e., 
Ji := {t | t ∈ Ĵi and γt ≥ tolindex}, where tolindex is a given tolerance. This hierarchical construction procedure stops when 
Ĵi+1 = ∅. The above procedure to adaptively select ANOVA terms is introduced in [24] and summarized in Appendix A
(Algorithm 4).

4. ANOVA Gaussian process modeling

In this section, our novel ANOVA Gaussian process (ANOVA-GP) modeling strategy is presented. This new strategy is 
based on building GP models for each ANOVA term. It is clear that, the dimensionality of each ANOVA term in (12) is the 
same as that of the simulator output, e.g., the finite element degrees of freedom, which is high-dimensional. As discussed in 
section 1, it is challenging to apply standard GP models for problems with high-dimensional outputs. To result in a reduced 
dimensional representation of the output, we apply the principal component analysis (PCA) [33,34] for each ANOVA term. 
After that, based on the data sets obtained in the ANOVA decomposition step (see section 3.2), an active training procedure 
is developed to construct the GP models for each PCA mode. Our overall ANOVA-GP procedure is summarized at the end of 
this section.

4.1. Principal component analysis

The principal component analysis [33] is to find subspaces in which observed data can be approximated well. The 
basis vectors of these subspaces are called the principal components, which are also referred to as proper orthogonal 
decomposition bases [35,36]. In this work, PCA is applied to obtain reduced dimensional representations for each ANOVA 
term ut(ξt) in (12). To conduct PCA for ut(ξt), a data set consisting of samples of ut(ξt) is required. In this section, the data 
set of ut(ξt) is generically denoted by ϑt := {y( j)

t | y( j)
t = ut(ξ

( j)
t ) ∈ Rd and j = 1, . . . , N}, where N denotes the size of |ϑt |. 

Note that the ANOVA decomposition procedure (see section 3.2) gives a data set 
t := {y(k)
t = ut(ξ

(k)
t ) | ξ (k)

t ∈ �t , and k =
1, . . . , |�t |} for each t ∈ J . This data set 
t can be used as an initial choice for ϑt to conduct PCA, while an active training 
procedure based on our new selection criterion provides additional sample points, which is discussed in section 4.2.

For each data set ϑt for t ∈J , the first step of PCA is to normalize the sample mean as follows
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1) μt = 1

N

N∑
j=1

y( j)
t , for j = 1, . . . , N ,

2) y( j)
t ← y( j)

t − μt .

After that, the empirical covariance matrix is assembled

� = 1

N

N∑
j=1

y( j)
t

(
y( j)

t

)T
.

The eigenvalues and the eigenvectors of � are denoted by λ1 ≥ . . . ≥ λN and v1, . . . , v N respectively. For a given tolerance 
tolpca , the first R eigenvectors {v1, . . . , v R} satisfying 

∑R
j=1 λ j/

∑N
j=1 λ j > 1 − tolpca but 

∑R−1
j=1 λ j/

∑N
j=1 λ j ≤ 1 − tolpca , 

are referred to as the principal components. In addition, Vt := [v1, . . . , v R ] denotes the matrix collecting the principal 
components. Details of PCA for each ANOVA term ut (ξ), t ∈J are summarized in Algorithm 1.

With the principal components, each ANOVA term ut(ξt) ∈Rd for an arbitrary realization of ξt can be approximated as:

ut(ξt) ≈ Vt ũt
(
ξt

) + μt,

where

ũt
(
ξt

) = [ũt,1
(
ξt

)
, . . . , ũt, R(ξt)]T ∈RR , ũt, r

(
ξt

) := v T
r (ut(ξt) − μt) for r = 1, . . . , R. (17)

In the following, ũt(ξt) is referred to as the principal component representation (PC representation) of ut(ξt).

Algorithm 1 Principal component analysis for each ANOVA term ut (ξt), t ∈J .

Input: A data set ϑt :=
{

y( j)
t

∣∣∣ y( j)
t = ut

(
ξ

( j)
t

)
∈Rd and j = 1, . . . , N

}
.

1: Compute the sample mean: μt = 1
N

∑N
j=1 y( j)

t .

2: Normalize the data: y( j)
t ← y( j)

t − μt for j = 1, . . . , N .

3: Construct the covariance matrix: � = 1
N

∑N
j=1 y( j)

t

(
y( j)

t

)T
.

4: Compute eigenpairs (λk, vk) of �, where k = 1, . . . , N and λ1 ≥ . . . ≥ λN .

5: Select the first R eigenvectors {v1, . . . , v R } such that 
∑R

j=1 λ j∑N
j=1 λ j

> 1 − tolpca , but 
∑R−1

j=1 λ j∑N
j=1 λ j

≤ 1 − tolpca .

6: Compute ũt

(
ξ

( j)
t

)
=

[
ũt,1

(
ξ

( j)
t

)
, . . . , ũt, R

(
ξ

( j)
t

)]T ←
[

v T
1 y( j)

t , . . . , v T
R y( j)

t

]T
, where j = 1, . . . , N .

7: Construct data vectors for PCA coefficients: αt,r =
[

ũt, r

(
ξ

(1)
t

)
, . . . , ũt, r

(
ξ

(N)
t

)]T
for r = 1, . . . , R .

Output: The sample mean μt , the principal component matrix Vt := [v1, . . . , v R ], eigenvalues λr and data vectors αt,r for r = 1, . . . , R .

4.2. Gaussian process regression with active training

In this section for each t ∈J , following the active data selection method developed in [18], a Gaussian process modeling 
strategy with active training is proposed for each PC representation ũt(ξt) = [ũt, 1(ξt), . . . , ̃ut, R(ξt)]T ∈RR (see (17)). Due to 
the compression obtained through PCA, the dimension R is typically very small and independent of the dimension of the 
simulator output (e.g., the finite element degrees of freedom). So, it is computationally feasible to construct GP models for 
each ANOVA term independently.

A Gaussian process is a collection of random variables, and any finite combinations of these random variables are joint 
Gaussian distributions. In our setting, for each realization of ξt , ũt, r(ξt) is considered to be a random variable in a Gaussian 
process. Following the presentation in [17], each of the prior GP models is denoted by ũt, r(ξt) ∼ GP(m(ξt), c(ξt , ξ ′

t )) where 
m(·) is the mean function and c(·, ·) is the covariance function of the Gaussian process GP that needs to be trained. The 
Gaussian process is specified by its mean function and covariance function [37]. In this work, the mean function is set to 
m(ξt) = 0, and the covariance function is set to a noisy squared exponential function

c
(
ξt, ξ

′
t

) = ρ2
1 · exp

(
− (

ξt − ξ ′
t

)T diag (�1, . . . , �M)−1 (
ξt − ξ ′

t

)
/2

)
+ ρ2

2 · δ (
ξt, ξ

′
t

)
. (18)

The last term in (18) is called ‘jitter’ [38], δ(ξt , ξ ′
t ) is a Kronecker delta function which is one if ξt = ξ ′

t and zero otherwise, 
and diag(�1, . . . , �M) is a diagonal matrix. The hyperparameters �1, . . . , �M and ρ2

1 , ρ2
2 are square correlation lengths and sig-

nal variances respectively. Denoting β = [�1, . . . , �M , ρ1, ρ2]T , the hyperparameters can be determined through minimizing 
the following negative log marginal likelihood M(β):

M (β) = − log p
(
αt,r |β

) = 1
log det (C (β)) + 1

αT
t,r C−1 (β)αt,r + N

log (2π) , (19)

2 2 2
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where αt,r = [ũt, r(ξ
(1)
t ), . . . , ̃ut, r(ξ

(N)
t )]T is the training target and C(β) is the covariance matrix with entries C(β) jk =

c(ξ
( j)
t , ξ (k)

t ) for j, k = 1, . . . , N . Minimizing M(β) is a non-convex optimization problem [39], and we use the MATLAB 
toolbox [40] to solve it, where conjugate gradient methods are included [41].

Once the hyperparameters are determined, from the joint distribution of ũt, r(ξt) and αt,r , the conditional predictive 
distribution for any arbitrary realization of ξt is:

ũt, r
(
ξt

) |αt,r, β ∼ Ut,r(ξt) := GP
(
m′

r(ξt, β), v ′
r (ξt, β)

)
, (20)

where m′
r(ξt , β) = cT∗ C(β)−1αt,r , v ′

r (ξt , β) = c (ξt , ξt) − cT∗ C (β)−1 c∗ , and c∗ = [c(ξt , ξ
(i)
t ), . . . , c(ξt , ξ

(N)
t )]T (see [37]). Col-

lecting the GP models for each PCA mode, the GP model for the overall PC representation for ũt
(
ξt

)
(17) is denoted by 

Ut(ξt) := [Ut,1(ξt), . . . , Ut,R(ξt)]T for each t ∈J . For a given realization of ξt , the predictive mean of Ut(ξt) is

U t(ξt) := [
m′

1 (ξt, β) , . . . ,m′
R (ξt, β)

]T
. (21)

With the principal components and the GP models for PC representations, each ANOVA term ut(ξt) can be approximated 
as the following local GP model (the setting of a global GP model to approximate the overall problem (1)–(2) is discussed in 
section 5),

ût(ξt) := Vt Ut(ξt) + μt, (22)

where Vt is the matrix consisting of the principal components and μt is the sample mean generated by Algorithm 1. The 
predictive mean of the local GP model is

ut
(
ξt

) := Vt U t(ξt) + μt . (23)

It is clear that building a local GP model (22) involves two main procedures: PCA and GP regression for each PCA mode. 
Both of these procedures are determined by the data set ϑt (the input of Algorithm 1). Our strategy is to use the data set 
t

generated by the ANOVA decomposition step (see section 3.2) as an initial input data set to conduct PCA and to build the 
GP model for each PCA mode, i.e., initially set ϑt := 
t . After that, following [18], an active training method is developed to 
argument the training data set ϑt gradually to result in an accurate local GP model for ut (ξt), which proceeds as follows. 
First, a candidate parameter sample set � is constructed using realizations of ξt (different from the quadrature points �t

for ANOVA decomposition in section 3.2). Second, for each sample in ξt ∈ �, a variance indicator of the current GP model is 
computed as

τ (ξt) :=
R∑

r=1

λr v ′
r (ξt, β)

/
R∑

r=1

λr , (24)

where λ1, . . . , λR are the eigenvalues generated in PCA with the current input data set, and v ′
r(ξt , β) is the variance of 

the current GP model for each PCA mode (see (20)). Third, the input sample point with the largest variance indicator 
value ξ∗

t = maxξt∈�τ(ξt) is selected to augment the input data set ϑt , and the local GP model is reconstructed with this 
augmented data set. The second and the third steps are repeated until ϑt includes Ntrain data points, where Ntrain > |�t | is 
a given number. Details of this active training procedure are shown in Algorithm 2.

Algorithm 2 Local GP modeling with active training for each ANOVA term ut (ξt), t ∈J .
Input: The number of training points Ntrain , and an initial training data set 
t .
1: Initialize a candidate set � consisting of realizations of ξt , with size |�| > Ntrain .
2: Initialize the training data set ϑt := 
t .
3: Use Algorithm 1 with ϑt to obtain the sample mean μt , the principal component matrix Vt := [v1, . . . , v R ], the eigenvalues λr and the data vectors 

αt,r for r = 1, . . . , R .
4: Train GP models Ut,r := GP

(
m′

r(ξt , β), v ′
r (ξt , β)

)
based on the training data vectors αt,r for each PCA mode r = 1, . . . , R (see (19)–(20)).

5: if |ϑt | < Ntrain then

6: For each ξt ∈ �, compute the variance indicator τ (ξt ) := ∑R
r=1 λr v ′

r (ξt , β)
/∑R

r=1 λr .

7: Find ξ∗
t = arg maxξt ∈�τ (ξt ).

8: Update the training data set: ϑt = ϑt ∪ {
ut

(
ξ∗

t

)}
.

9: Remove ξ∗
t from the candidate set: � = � \ ξ∗

t .
10: Go to line 3.
11: end if
12: Construct the GP model for the PC representation: Ut = [Ut,1, . . . , Ut,R ]T ∈RR with Ut,r := GP

(
m′

r(ξt , β), v ′
r (ξt , β)

)
for r = 1, . . . , R .

13: Construct the local GP model: ût(ξt ) = Vt Ut (ξt ) + μt .
Output: The local GP emulator ût(ξt ).
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4.3. Overall ANOVA-GP model

With a given simulator for the problem (1)–(2), our overall ANOVA-GP modeling proceeds as the following three 
main steps. First, ANOVA decomposition is conducted (see section 3.2), which gives an effective index set J and initial 
training data sets 
t := {y(k)

t = ut(ξ
(k)
t ) | ξ (k)

t ∈ �t, and k = 1, . . . , |�t |} for t ∈ J . Denoting the highest ANOVA order by 
h := maxt∈J |t|, for each i-th order index (i.e., t ∈J and |t| = i), the number of training points for the local GP model is set 
to Nagp,i (i.e., Ntrain = Nagp,i in Algorithm 2). We next define Nagp := [Nagp,1, . . . , Nagp,h]T . Considering the intrinsic property 
of Gaussian process modeling that more training data are needed for problems with higher-dimensional inputs [19], we set 
Nagp,1 < . . . < Nagp,h . After that, the local GP models ût(ξt) for each ANOVA index t ∈ J are built using Algorithm 2 with 

t and Ntrain = Nagp,|t| . Finally, the overall ANOVA-GP model is assembled as

ûJ (ξ) :=
∑
t∈J

ût (ξt) . (25)

For each realization of ξ , the predictive mean of the ANOVA-GP model is,

uJ (ξ) :=
∑
t∈J

ut (ξt) , (26)

where ut(ξt) is the predictive mean of the local GP model defined in (23). This ANOVA-GP modeling procedure is summa-
rized in Algorithm 3.

Algorithm 3 ANOVA-GP modeling.
Input: A simulator for (1)–(2) and the probability density function of ξ .
1: Conduct ANOVA decomposition (see section 3.2) to obtain an effective index set J and data sets 
t := {y(k)

t = ut (ξ
(k)
t ) | ξ (k)

t ∈ �t , and k = 1, . . . , |�t |}
for t ∈ J .

2: Get the highest ANOVA order h := maxt∈J |t|.
3: Set the number of training points for each ANOVA order Nagp := [Nagp,1, . . . , Nagp,h]T .
4: for t ∈ J do
5: Build the local GP model ût(ξt ) using Algorithm 2 with 
t and Ntrain = Nagp,|t| .
6: end for
7: Assemble the ANOVA-GP emulator: ûJ (ξ) := ∑

t∈J û (ξt ).
Output: The ANOVA-GP emulator ûJ (ξ).

As the ANOVA decomposition is a popular strategy for resolving high-dimensional problems, many ANOVA based meth-
ods have been actively developed in the context of uncertainty quantification, e.g., the ANOVA collocation methods [24,26]
and the ANOVA reduced basis methods [42,43], while our ANOVA-GP provides the following benefits. First, ANOVA-GP is a 
non-intrusive method—only repetitive runs of the given simulator are required to generate the training data sets, so that it 
is easy to implement and generalize to complex engineering systems. Second, in ANOVA-GP, each ANOVA term is modeled 
by a local GP model, which is an interpretable Bayesian model and can provide error indicators based on the variance. These 
error indicators naturally result in the systematic active training procedure for each ANOVA term in section 4.2. In addition, 
as discussed in [18], the uncertainty in these GP models (and the overall ANOVA-GP model) and the uncertainty in input 
parameters can be taken into account using the Bayesian theory.

5. Numerical study

In this section, two kinds of model problems are studied to illustrate the effectiveness of our ANOVA-GP strategy: 
stochastic diffusion problems in section 5.1 and stochastic incompressible flow problems in section 5.2. For comparison, 
a direct combination of Gaussian process modeling and PCA is considered, which is referred to as the standard Gaussian 
process (S-GP) in the following. While S-GP is originally developed by [15] for model calibration, we here modify it to build 
surrogates for the problem (1)–(2). The S-GP emulator for (1)–(2) is denoted by uSG P (ξ), and details of our setting for con-
structing uSG P (ξ) are summarized in Algorithm 5 in Appendix A. Using the notation in Algorithm 5, the predictive mean of 
uSG P (ξ) is denoted by

uSG P (ξ) := V U + μ, (27)

where U := [m′
1, . . . , m

′
R ]T , m′

1, . . . , m
′
R and μ are defined in Algorithm 5.

5.1. Test problem 1: diffusion problems

We consider the following governing equations posed on the physical domain D = (−1, 1) × (−1, 1):

−∇ · [a (x, ξ)∇usol (x, ξ)] = 1 in D × Im, (28)

usol (x, ξ) = 0 on ∂ D × Im. (29)
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Fig. 1. Partitionings of the physical domain with ND = 36 and 64 subdomains, test problem 1.

Table 1
Number of effective ANOVA terms, test problem 1.

ND |Ĵ1| |J1| |Ĵ2| |J2| |Ĵ3| |J3|
36 36 36 630 100 80 0
64 64 64 2016 172 120 0

Dividing the physical domain D into ND subdomains, each of which is denoted by Dk for k = 1, . . . , ND , the permeability 
coefficient a(x, ξ) is defined to be a piecewise constant function

a (x, ξ) |Dk = ξk, k = 1, . . . , ND , (30)

where ξ1, . . . , ξND are independently and uniformly distributed in [0.01, 1] and m = ND for this test problem. Two cases 
of physical domain partitionings are considered, which are shown in Fig. 1 and include 36 and 64 parameters respectively. 
For each realization of ξ , the simulator for (28)–(29) is set to the finite element method [44,2], where a bilinear Q 1 finite 
element approximation is used to discretize the physical domain with a 65 × 65 grid, i.e., the dimension of the simulator 
output is d = 4225.

As discussed in section 4.3, the first step of our ANOVA-GP strategy is to conduct ANOVA decomposition (see section 3.2) 
for (28)–(29). In the adaptive ANOVA decomposition procedure, the quadrature rule is set to the tensor products of one-
dimensional Clenshaw-Curtis quadrature with five quadrature points [45], and the tolerance for selecting effective indices is 
set to tolindex = 10−4. The tolerance of PCA (in Algorithm 1) for both ANOVA-GP and S-GP are set to tolpca = 10−2. Table 1
shows sizes of the index sets Ĵi constructed by (13) and sizes of the selected index sets Ji at each ANOVA order i = 1, 2, 3. 
For the two cases of physical domain partitionings (ND = 36 and 64), all first order indices and a fraction of second order 
indices are selected, while there is no third order index selected, which is consistent with the results in [26,42].

Accuracy of our ANOVA-GP emulator and the standard GP (S-GP) emulator is assessed as follows. First, 200 samples 
of ξ is generated and denoted by {ξ ( j)}200

j=1, and the corresponding simulator output is computed and denoted by {y( j) =
u(ξ ( j))}200

j=1. Next, for each j = 1, . . . , 200, we consider the relative error used in [17]

Relative error =
∥∥∥y( j)

p − y( j)
∥∥∥2

∥∥y( j)
∥∥2

, (31)

where ‖ · ‖ is the standard Euclidean norm. In (31), y( j)
p refers to the predictive mean uJ (ξ ( j)) in (26) when assessing the 

errors of ANOVA-GP, and it refers to uSG P (ξ ( j)) in (27) when assessing the errors of S-GP. Different numbers of training 
data points to build the GP models are tested. For ANOVA-GP (Algorithm 3), the following numbers of training points are 
tested: Nagp = [30, 50]T , [40, 75]T and [50, 100]T , where Nagp is defined in section 4.3. For a fair comparison, for S-GP (see 
Algorithm 5), the number of training points Nsgp is set to the number of all training points generated in Algorithm 3, which 
is Nsgp = Nagp,1 × |J1| + Nagp,2 × |J2|, where |J1|, |J2| are the numbers of the first and the second order effective ANOVA 
indices. Fig. 2 shows Tukey box plots of the errors for the test problem with 36 and 64 subdomains. Here, the central line 
in each box is the median, the lower and the upper edges are the first and the third quartiles respectively, and the crosses 
are the outliers where the relative errors are large. From Fig. 2, it is clear that as the number of training points increases, 
our ANOVA-GP has smaller errors than S-GP.
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Fig. 2. Relative errors of ANOVA-GP and S-GP for 200 test data points, test problem 1.

Fig. 3 shows the simulator output and the emulator predictive means corresponding to a given realization of ξ . It is clear 
that the predictive means of ANOVA-GP are much more accurate than those of S-GP. For example, looking at the simulator 
output for the case ND = 36 in Fig. 3(a), there is a bump near the top right corner (1, 1). The predictive mean of S-GP in 
Fig. 3(b) is too smooth and can not show the bump, while our ANOVA-GP output in Fig. 3(c) can capture all details of the 
simulator output. For the case ND = 64, the predictive mean of ANOVA-GP in Fig. 3(f) is very close to the simulator output 
(shown in Fig. 3(d)), while the predictive mean of S-GP (Fig. 3(e)) can not capture the bump near (1, −1) which can clearly 
be seen in Fig. 3(d) and Fig. 3(f).
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Fig. 3. Examples of predictions made by S-GP and ANOVA-GP, and the simulator outputs for both ND = 36 and 64 subdomains, test problem 1.

For both ANOVA-GP and S-GP, PCA is conducted to result in a reduced dimensional representation of the outputs. Here, 
we show results of the case ND = 36 with Nagp = [50, 100]T for ANOVA-GP and Nsgp = 11800 for S-GP, and the case 
ND = 64 with Nagp = [50, 100]T and Nsgp = 20400. For S-GP, the number of PCA modes retained is 60 for the case ND = 36, 
and that is 100 for ND = 64. Fig. 4 shows the number of PCA modes retained for each ANOVA term in ANOVA-GP. It is 
clear that, the numbers are very small—there are at most two PCA modes retained for both cases (ND = 36 and ND = 64). 
In Fig. 4 the ANOVA indices are ordered alphabetically as: for any two different indices t( j) and t(k) belonging J , t( j) is 
ordered before t(k) (i.e., j < k), if one of the following two cases is true: (a) |t( j)| < |t(k)|; (b) |t( j)| = |t(k)| and for the smallest 
number n ∈ {1, . . . , |t( j)|} such that t( j)

n �= t(k)
n , we have t( j)

n < t(k)
n (where t( j)

n and t(k)
n are the n-th components of t( j) and 

t(k)). So, each local GP model (see line 4 of Algorithm 2) in ANOVA-GP only involves a very small number of independent 
GP models, so that training local GP models and using them to conduct predictions are both cheap.

Note that the anchored ANOVA decomposition in general loses the orthogonality between expansion terms when the 
Lebesgue measure is employed [46]. To assess how ANOVA-GP keeps the properties of the anchored ANOVA decomposition, 
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Fig. 4. Number of PCA modes retained, test problem 1.

we compute the errors in covariance (including variances) estimates between the effective ANOVA terms as follows. For any 
two indices t, s ∈J , the covariance between ANOVA terms ut and us is computed through

Cov (ut, us) ≈ Ĉov (ut, us) := Ê
((

ut − Ê(ut)
)(

us − Ê(us)
))

, (32)

where the quadrature rule for Ê (see (16)) is set to the tensor products of one-dimensional Clenshaw-Curtis quadrature with 
nine quadrature points. The errors in covariance estimates are then defined as ‖Ĉov(ut , us) − Ĉov(ut , us)‖, where ut and us

are generated through the simulator, and ut and us are the predictive means of the local GP models. Fig. 5 shows Tukey 
box plots of the errors in the covariance estimates for all pairs of the ANOVA terms, where the central line in each box is 
the median, the lower and the upper edges are the first and the third quartiles respectively, the crosses are the outliers, 
and Setting 1, Setting 2 and Setting 3 refer to the cases Nagp = [30, 50]T , [40, 75]T and [50, 100]T respectively. From Fig. 5, 
it is clear that the majority of the errors are small and decrease as the training data are augmented. Looking more closely, 
Fig. 6 shows the 200 largest Euclidean norms of the covariance estimates ‖Ĉov(ut , us)‖ and the corresponding ‖Ĉov(ut , us)‖. 
It can be seen that for these 200 pairs of ANOVA terms, as the training data are augmented, the Euclidean norms of the 
covariance estimates obtained through the simulator and the local GP models become closer.

In addition, following [46,42], we compute the relative standard deviation for this test problem through κ :=
‖(∑t∈J

∑
s∈J Ĉov(ut , us))

1/2‖/‖ 
∑

t∈J Ê(ut)‖. The values of κ are 0.3053 and 0.2044 for the cases ND = 36 and ND = 64

respectively. The relative standard deviation for each ANOVA term is computed as κt := ‖(Ĉov(ut , ut))
1/2‖/‖Ê(ut)‖. The 

values of κt (for t ∈ J ) ranges from 4 to 11 for both cases (ND = 36 and ND = 64). As the norm of the mean for each 
ANOVA term is smaller than that for the whole ANOVA expansion for this test problem, it is not surprising that the values 
of κt are larger than the values of κ , while neither κ nor κt has small values. To this end, it can be seen that a small 
number of training data points (e.g., Nagp = [50, 100]T ) can result in efficient local GP models and the overall ANOVA-GP 
emulator. As discussed in [47,19], the input-space correlations of standard GP emulators are defined based on the Euclidean 
distance. So, to achieve an accurate approximation, the number of required training data points dramatically increases as 
the dimensionality of the input space increases. This is consistent with our numerical results above—ANOVA-GP has smaller 
errors than S-GP for the same number of training data points. Unlike S-GP which takes the high-dimensional inputs as a 
whole, the ANOVA terms in ANOVA-GP only have low-dimensional inputs, which are at most two-dimensional for this test 
problem, and therefore a small number of training points can lead to accurate local GP models.

5.2. Test problem 2: the Stokes problems

The Stokes equations for this test problem are

∇ · [a (x, ξ)∇usol (x, ξ)] + ∇psol (x, ξ) = 0 in D × Im, (33)

∇ · usol (x, ξ) = 0 in D × Im, (34)

usol (x, ξ) = g on ∂ D × Im, (35)

where D ∈R2, and usol(x, ξ) = [usol,1(x, ξ), usol,2(x, ξ)]T and psol(x, ξ) are the flow velocity and the scalar pressure respec-
tively. In (33), we focus on the situation that there exists uncertainties in the flow viscosity a(x, ξ), which is assumed to be 
a random field with mean function a0(x) = 1, standard deviation σ = 0.5 and covariance function Cov(x, x′)
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Fig. 5. Errors in covariance estimates, test problem 1.

Fig. 6. The 200 largest Euclidean norms of the covariance estimates (Simulator refers to ‖Ĉov(ut , us)‖, and Local GP refers to ‖Ĉov(ut , us)‖), test problem 1.

Cov
(
x, x′) = σ 2exp

(
−|x1 − x′

1|
lc

− |x2 − x′
2|

lc

)
. (36)

In (36), x = [x1, x2]T , x′ = [x′
1, x

′
2]T ∈ D , and the correlation length is set to lc = 0.5. To approximate the random field a(x, ξ), 

the truncated KL expansion can be applied [48,7,49]
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Fig. 7. Relative errors of ANOVA-GP and S-GP for 200 test data points, test problem 2.

a (x, ξ) ≈ a0 (x) +
m∑

i=1

√
ζiai (x) ξi,

where ζ1 ≥, . . . , ≥ ζm and a1(x), . . . , am(x) are the eigenvalues and eigenfunctions of the covariance function (36), m is the 
number of KL modes retained, and ξ = [ξ1, . . . , ξm]T are uncorrelated random variables. In this test problem, ξ1, . . . , ξm

are assumed to be independent uniform distributions in [−1, 1]. We consider the driven cavity flow problem posed on 
the physical domain D = (0, 1) × (0, 1). The velocity profile u = [1, 0]T is imposed on the top boundary {[x1, x2]T | x1 ∈
(0, 1), x2 = 1}, and the no-slip and no-penetration condition u = [0, 0]T is applied on all other boundaries. The error of the 
truncated KL expansion depends on the amount of total variance captured, and we set m = 109 to capture 95% of the total 
variance, i.e., 

∑m
j=1 ζ j/(|D|σ 2) > 0.95, where |D| refers to the area of D [7,50].

The simulator for this test problem is set to the Q 2 − P −1 mixed finite element method (biquadratic velocity–linear 
discontinuous pressure) implemented in IFISS [51,2], with the physical domain discretized on a uniform 33 × 33 grid, which 
gives the velocity degrees of freedom Nu = 2178 and the pressure degrees of freedom Np = 768. For each realization of ξ , 
the simulator output y is defined to be the vector collecting the coefficients of the Q 2 − P −1 approximation solution for 
(33)–(35), and the dimension of the simulator output is 2946.

For this test problem, since the simulator output for the Stokes problem involves velocity and pressure approximations, 
the relative mean (14) is defined to be the sum of the functional L2 norms of the approximation functions associated with 
them, i.e., γt := (‖Ê(ut)‖L2 + ‖Ê(pt)‖L2 )/(‖

∑
s∈J0∪···∪J|t|−1

Ê(us)‖L2 + ‖∑
s∈J0∪···∪J|t|−1

Ê(ps)‖L2), where ut and pt denote 
ANOVA terms for velocity and pressure respectively (see (10)). The tolerance for selecting ANOVA terms (see section 3.2) is 
set to tolindex = 10−5, and the quadrature rule is set to the tensor products of one-dimensional Clenshaw-Curtis quadrature 
with five quadrature points, while the tolerance for PCA is set to tolpca = 10−3 in Algorithm 1. In this setting, the index 
set J constructed through the adaptive ANOVA decomposition procedure only contains the zeroth order index and 32 first 
order indices, i.e., |J1| = 32 and |J | = 33. The number of training points for ANOVA-GP is set to Nagp = Nagp,1 = 50 (as only 
first order ANOVA terms exist) and that for S-GP is set to Nsgp := (|J | − 1) × Nagp,1 = 1600 (as the input of Algorithm 5) for 
a fair comparison. Again, 200 samples of ξ are generated and the corresponding simulator outputs are computed. The errors 
of ANOVA-GP and S-GP are assessed through the relative error defined in (31). Fig. 7 shows Tukey box plots of the errors 
for both ANOVA-GP and S-GP, where the central line in each box is the median, the lower and the upper edges are the 
first and the third quartiles respectively, and the crosses are the outliers where the relative errors are large. It is clear that 
the errors of ANOVA-GP are one order of magnitude smaller than the errors of S-GP. In addition, the number of principal 
components retained for S-GP is 30 and that for each ANOVA term in ANOVA-GP is one, which indicates that the ANOVA 
terms (10) have very small ranks.

Fig. 8 shows the simulator output and the ANOVA-GP and the S-GP predictive means corresponding to a given realization 
of ξ . From Fig. 8(a), Fig. 8(b) and Fig. 8(c), it can be seen that the velocity streamlines obtained from the simulator output 
and those from ANOVA-GP and S-GP emulators are visually indistinguishable. However, from 8(d), Fig. 8(e) and Fig. 8(f), the 
pressure obtained from S-GP is clearly larger than that of the simulator near the upper right corner (1,1), while the pressure 
fields obtained from ANOVA-GP and the simulator are visually indistinguishable. To look more closely, we compute the 
errors of the emulator predictive means as follows. For a physical grid point, let u = [u1, u2]T and p denote the velocity and 
the pressure obtained through the simulator at this grid point, and u = [u1, u2] and p denote the velocity and the pressure 
obtained through the emulators (predictive means of ANOVA-GP and S-GP). The errors of velocity and pressure at this grid 
point are defined as erroru := √

(u1 − u1)2 + (u2 − u2)2 and errorp = |p − p| respectively. Fig. 9 shows these errors. From 
Fig. 9(a) and Fig. 9(b), it can be seen that the maximum velocity error of ANOVA-GP is less than half of the maximum error 
of S-GP. From Fig. 9(c) and Fig. 9(d), the maximum pressure error of ANOVA-GP is less than ten percent of the maximum 
error of S-GP.
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Fig. 8. Examples of predictions made by S-GP and ANOVA-GP, and the simulator outputs, test problem 2.

6. Concluding remarks

Conducting dimension reduction is one of the fundamental concepts to develop efficient GP emulators for complex 
computational models with high-dimensional inputs and outputs. With a focus on adaptive ANOVA decomposition, this 
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Fig. 9. Errors of S-GP and ANOVA-GP predictions, test problem 2.

paper proposes a novel ANOVA-GP strategy. In ANOVA-GP, the high-dimensional inputs are decomposed into a combination 
of low-dimensional local inputs through adaptive ANOVA decomposition, and PCA is applied on each ANOVA term (12) to 
result in a reduced dimensional representation of the outputs. Local GP models are built through active training with initial 
data obtained in the ANOVA decomposition procedure. Since each local input is low-dimensional and the resulting term 
in the ANOVA expansion has a small rank, GP emulation for each ANOVA term becomes less challenging compared with 
that for the overall problem (1)–(2). From numerical studies, it can be seen that a very small number of data points are 
required to build local GP models for each ANOVA term. It is also clear that for a given number of training data points, 
prediction errors of ANOVA-GP are smaller than the errors of the standard GP method. In addition, the cost of ANOVA-GP 
for conducting predictions is cheaper than that of standard GP. From Algorithm 3, it can be seen that the total number of 
training data points to generate the ANOVA-GP model is 

∑h
i=1 |Ji |Nagp,i . The cost of using GP models to make a single 

prediction is dominated by the cost of computing the inverse of the covariance matrix (see (20))—the main cost of ANOVA-
GP is then O (

∑h
i=1 |Ji |N3

agp,i), and the main cost of the standard GP method with 
∑h

i=1 |Ji |Nagp,i training data points is 
O ((

∑h
i=1 |Ji |Nagp,i)

3) (which is larger than that of ANOVA-GP). As in our ANOVA-GP setting, PCA is applied to conduct 
dimension reduction for the output space, and the number of training data points for local GP models with ANOVA order i
are all set to the same number Nagp,i (see Algorithm 3), which may not be optimal when the underlying problem has highly 
nonlinear structures. A possible solution is to apply nonlinear model reduction methods and adaptive training procedures 
to result in different numbers of training data points for each ANOVA term, which will be the focus of our future work.
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Appendix A. Algorithms for the adaptive ANOVA decomposition and the standard Gaussian process modeling

Algorithm 4 The adaptive anchored ANOVA decomposition.
Input: A simulator for (1)–(2) and the probability density function of ξ .
1: Initialize: J = {∅}, Ĵ1 = {1, 2 . . . , M} and i = 1.
2: Compute u(c) through the given simulator, where c is the anchor point.
3: while Ĵi �= ∅ do
4: Set Ji = ∅.
5: for t ∈ Ĵi do

6: Setup the Clenshaw-Curtis tensor quadrature points �t =
{
ξ

(1)
t , . . . , ξ

(|�t |)
t

}
and weights 

{
w

(
ξ

(k)
t

)}
for k = 1, . . . , |�t |.

7: Compute γt :=
∥∥∥Ê(ut (ξt ))

∥∥∥
L2∥∥∥∑

s∈J Ê(us(ξs))

∥∥∥
L2

, where Ê is defined in (16) and ut (ξt ) is computed using (10) with the simulator.

8: if γt > tolindex then
9: Update Ji = Ji ∪ {t}.

10: end if
11: end for
12: Update J = J ∪Ji .
13: Construct Ĵi+1 = {

t
∣∣ |t| = i + 1,and any s ⊂ t with |s| = i satisfies s ∈ Ji

}
.

14: Update the ANOVA order: i = i + 1.
15: end while
Output: An effective index set J and data sets 
t :=

{
y(k)

t = ut

(
ξ

(k)
t

) ∣∣∣ ξ
(k)
t ∈ �t , and k = 1, . . . , |�t |

}
for t ∈ J .

Algorithm 5 Standard Gaussian process (S-GP) modeling.
Input: A simulator for (1)–(2), the probability density function of ξ and the number of training points Nsgp .

1: Generate Nsgp samples of ξ : {ξ ( j)
}Nsgp

j=1 .

2: Compute the simulator outputs: {y( j) = u
(
ξ ( j)

)}Nsgp

j=1 .

3: Conduct PCA using Algorithm 1 with the input data set {y( j) = u
(
ξ ( j)

)}Nsgp

j=1 , to obtain the sample mean μ, the principal component matrix V :=
[v1, . . . , v R ], and the data vectors αr for r = 1, . . . , R .

4: Construct GP models for PCA modes: U = [U1, . . . , U R ]T ∈RR with Ur := GP
(
m′

r(ξ,β), v ′
r (ξ,β)

)
for r = 1, . . . , R (see (19)–(20)).

5: Construct the S-GP emulator: uSG P (ξ) = V U (ξ) + μ.
Output: The S-GP emulator uSG P (ξ).
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[21] H. Rabitz, Ö.F. Aliş, J. Shorter, K. Shim, Efficient input–output model representations, Comput. Phys. Commun. 117 (1–2) (1999) 11–20.
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