
Building Responsible, Data-Driven Visualization Recommendation
Systems

CMSC828D Project Report
Suleyman Aslan*

Department of Computer
Science

University of Maryland

Chen Chen†

Department of Computer
Science

University of Maryland

Ethan Remsberg‡

Department of Computer
Science

University of Maryland

Tianshu Xu§

Department of Computer
Science

University of Maryland
Yufan Zheng¶

Department of Computer
Science

University of Maryland

ABSTRACT

Multiple state-of-the-art visualization tools, such as D3 and Vega-
Lite, emerge to make visualization generalization easy for re-
searchers, data scientists and even for users without programming
experience and background knowledge. People could largely benefit
from these easy-to-use systems and tools to create visualizations and
run analyses. However, there are data issue detection and data issue
cleaning either not supported in the tools or can not be easily used.
Moreover, there is a need that visualization systems should not only
to output required charts but also to flag and explain potential issues
within users’ data. Therefore, based upon a previous prototype, we
present a visualization recommendation system which can detect
potential statistical data issues and suggest possible solutions. We
propose refined methods on building collection of implementable
and commonly-seen data issues, a function that accepts datasets
from the user’s side, an interactive user interface that is in a clear
layout, and an educative visual recommendation panel including nec-
essary explanations and possible solutions for detected data issues.
We also present a user study involving 4 participants to validate the
effectiveness and usability of our system.

Index Terms: Database—Data Visualization—Statistics; Informa-
tive Prediction—Recommendation System

1 INTRODUCTION

Visualizations are probably the most important tool that people from
various backgrounds use to illustrate their ideas and findings. This
is also the reason that most programming languages have their own
built-in visualization toolkits, such as ggplot2 in R [44] and pyplot
in Python [1]. To meet the needs of non-programmers who do not
use programming languages much in their daily work, many visual-
ization tools under the framework of the Grammar of graphics [45]
emerges, e.g., Vega [3], D3 [9] and Vega-Lite [34]. Without much ex-
perience with programming, even novice users can build expressive
visualizations using their own data after a short learning period.

Despite the effectiveness and convenience, these visualization
tools have brought, potential problems related to the data itself (e.g.,
data quality) can be overlooked easily: easy-to-use systems allow
users to create fine visualizations and run analyses even without

*e-mail: aslan@umd.edu
†e-mail: cchen24@cs.umd.edu
‡e-mail: eremsber@umd.edu
§e-mail: txu@umd.edu
¶e-mail: yfzheng@umd.edu

having to see and understand their data. When problems occur, it is
mostly left up to the users to determine which parts of the data have
issues by really looking at the data itself, which is difficult and incon-
venient especially in the big data regime. Also, it cannot be expected
much that users can appropriately check and clean their data since
the visualization tools are built for broad users many of whom might
have less experience of database and programming. Thus, there is a
need that visualization systems not only to output required charts but
also to flag and explain potential issues within users’ data. In this
way, users can be educated to learn their data better and potentially
address some issues using their own domain knowledge by inter-
acting with the system and further produce correct and statistically
sound visualizations.

Designing this kind of system is certainly not an easy task, and
we list three major challenges here. First, which set of data issues
to target in the system need to be considered carefully. Basically, we
want the issues that the system can detect to be commonly seen in
general datasets, not too hard to detect and address, and influential
in the quality of the generated visualization. The automation of the
checking needs to be fast (ideally as quick as the generalization of
the visualization) to avoid too much latency, which poses challenges
over the implementation of the detection process. Apart from the
efficiency, automatic data cleaning without domain knowledge is
known to be a difficult problem [4]. Second, the user should be
able to interact with the system easily and intuitively even without a
sufficient statistics background. This requires the system to output
easy-to-understand and clear explanations over the detected issues,
and provide possible solutions to them. The information display
should be obvious other than disruptive and should balance between
quick information and explanatory details. Third, the checking for
data issues should work for personal datasets from the user. The
system is built for helping users better understand and debug their
own datasets, making the ability of generalization to different kinds
of datasets of the system important. In general, dealing with a large
dataset space without user inputs is a hard task, let alone there could
potentially exist several kinds of statistical issues. In summary,
balancing all of the challenges above is a tough exercise in good
user-driven design and implementation.

There is literature in the field of visualization studying the pitfalls
and challenges of visual analysis [10, 25, 27], which, however, start
with the visual perception side without flagging potential data quality
problems as an issue. In [25], the authors indeed raised the existence
of potential data quality issues by saying “either designed to be
insensitive to data quality issues through the employment of data
cleaning methods or to explicitly visualize errors and uncertainty in
the application to make the analyst aware of the problem”, however,
without discussing possible solutions. Instead, they assumed the
user has sufficient expert knowledge to tackle the data issues accord-
ingly, which is not realistic nowadays given the developing trend

and the broadly targeted users of visualization tools as discussed
before. In the field of database and data management, people who
consider the data cleaning task mostly operate directly upon the data
itself [4, 31, 33, 37], meaning that this is not a feature injected into
any visualization system and the user may not be able to visually
learn the detected issues and erroneous data. A few works, such
as [29, 32], considered combining some visual components and the
data cleaning process, however, in an opposite manner: using vi-
sualizations to better illustrate and detect potential data issues and
perform cleaning. The visual components used are rather basic, and
the final goal of the two papers is to produce data with the good
quality other than high-quality visualizations generated from clean
data. Apart from the literature from the two fields above, we do
notice that some visual analytic software does have some basic data
quality checking, e.g., Tableau [2] automatically filters out nulls in
the final visualizations. However, to the best of our knowledge, a
visualization recommendation system embedded with meaningful
statistical checking over data to help the user better understand and
explore their datasets is currently missing.

In this project, we build upon a previous prototype called
StatCheck1.0, which we would refer to as StatCheck1.0 later in this
report, to produce a visualization recommendation system that helps
the user perform certain kinds of data issue checking and suggest
potential solutions. Based on our experiences testing StatCheck1.0,
we propose to improve it by reorganizing the layout to make it more
clear and informative and supporting more meaningful interactions
between the recommendation interface and the user. In summary,
our contributions lie in three folders:

1. We re-organized and modified the original layout of the system,
making it easier for the user to follow the pipeline and the
positions of different charts more balanced. We also added a
personal data uploading feature to allow customized dataset
checking;

2. We enhanced the interaction between the user and the checking
results, e.g., for the outlier detection, a slider is added to allow
the user to control the percentage of data being filtered out;
when multiple issues are presented, we allow the user to delete
some of them based on their domain knowledge and update
the visualization accordingly;

3. We presented a user study which involved 4 participant. We
validated the usability and effectiveness of our system using
the evaluation results compared to StatCheck1.0.

2 RELATED WORK

Data visualization is crucial for researchers and data analyzers during
the process of data analyzing and processing. The visualization
results normally explains the significance of data to people who are
visually oriented [30], and provides users with intuitive means to
interactively explore and analyze data, enabling them to effectively
identify interesting patterns, infer correlations and causalities, and
supports sense-making activities [8].

Although there are different kinds of data visualization emerging
and developed in recent years, challenges and unsophisticated are
still largely existing in this area induced by people with different
visualization-related skills. For example, there might be gap be-
tween data characterization tools, visualization design tools, and
development platforms under the condition that many teams may
include both designers who create new visualization designs and
developers who implement the resulting visualization software [40].
While database researchers designing a new interactive analysis sys-
tem for exploring large datasets, pitfalls may also occur in the design
if visual perception is ignored. To ease this challenge, researchers
investigated properties of crowdsourced for graphical perception

research and using Amazon’s Mechanical Turk to evaluate visualiza-
tions [20].

It is common for making prediction and recommendation in in-
teraction data visualization tools [41]. The idea of predicting future
is achieved by making passively observations clicks from the past
and reported an average 95% on prediction accuracy. Along with
that, the authors also present a framework for automatically learn-
ing future click events during data exploration and demonstrate. A
visualization recommendation engine SEEDB [38] also developed
to facilitate fast visual analysis. By study a given subset of data,
SEEDB explores the space of visualizations, evaluates promising vi-
sualizations for trends, and recommends those it deems most “useful”
or “interesting”.

The idea of exploratory analysis via faceted browsing of visual-
ization recommendations [46] is to make visualization recommen-
dations according to statistical and perceptual measures. Brown
et al. [11] accurately predict a user’s task performance and infer
some user personality traits by using machine learning techniques to
analyze interaction data. More recently, Battle et al. [7] designed a
tool for exploratory browsing of large datasets. By utilizing a client-
server architecture, the authors present a two-level prediction engine,
with an SVM classifier at the top level to predict the user’s current
analysis phase, and recommendation models at the bottom to predict
low-level interaction patterns. Early work experiments [17] made
contribution to visualization recommendation by monitoring users’
behavior for implicit signals of user intent, and therefore provide
more effective recommendations. In order to make visual explo-
ration tool scale well and more adaptive to huge datasets, as well
as to support exploratory activities [15], the authors apply semantic
caching of active query sets and several prefetching strategies to
exploiting characteristics of the visual exploration environment.

Statistical data visualization via interactive dashboard has been
studied extensively in recent years. There are existing work mak-
ing statistical graphics using Python, matplotlib, and integrate with
pandas library [43]. The statistical, interactive data visualization
also introduced to the field of medical and health care. In [26], Ko
et al. present a study that suggests the procedures of efficient visu-
alization of big data for general healthcare researchers. Statistical
data visualization is also be concerned by replace the dataset with
a distribution based proxy representation that summarizes scalar
information into a much reduced memory footprint [42]. Statistical
modeling of data is largely being used in many other different fields
such as financial [23], agriculture [13], and biological [5].

There has been a significant surge in data error detection re-
search [18, 31]. The integration of large amount of data always
induced data errors due to different data resources, different levels
of data quality and inconsistency in data attributes [39]. Our work
is inspired by the work of [4] which classify data issues into four
categories: Outlier, Duplicates, Rule Violations, and Pattern Viola-
tions. One closely related technique addressing the data error within
dataset is detect duplication. In order to detecting and addressing
data duplication issue, Kolcz et al. [14] consider the consequences
of duplicate presence of data and Balaji et al. [6] address the issue
by combining data duplication and then using degree sorting to elim-
inate the overheads of optimization and improves the efficiency of
data duplication. Master data management is introduced in [19] to
reduce data redundancy in an organization. It is important to note
that the goal to detect asymmetrical distribution within the dataset
using method such as computer-intensive [36] and approximate nu-
merical [47]. On the other hand, the existing methods are helping
with outliers detection. For example, Jiang et al. [22] proposed a
two-phase clustering algorithm by firstly modifying the k-mean al-
gorithm and then construct the minimum spanning tree and remove
the longest edge. Moreover, Cateni et al. [12] present an outlier
detection method based on a fuzzy inference system. There has
been a long time research problem on how to dealing with missing

values in data analysis and data visualization. Previous work by
Scheffer [35] has compared eight different methods of imputation
with different amounts of missing data, but their focus is on how
mean and standard deviation are affected by different imputation
methods. Some common, simple methods for missing value im-
putation such as using mean, median, or k-nearest neighbor are
discussed in [24]. Other approaches are introduced such as principal
component analysis [16, 21] and the use of penalized splines of the
propensity score [28].

3 DESIGN GOALS

As we mentioned before, the system should not assume an expert
user. Thus, the overall system should have a clear layout, an easy-
to-use pipeline, and necessary explanations for components/results.
Based on these requirements we have for the system, we conclude
the following four design goals:

(G1): A collection of implementable and commonly-seen data issues.

As we mentioned before, we don’t assume the user to have any
specific domain knowledge (though if any, they can use their
knowledge to better interact with the recommended informa-
tion). Thus, we seek for commonly-seen, not too hard to detect
and address, and potentially influential in the quality of the
generated visualization. If we can help the user to address such
a set of basic issues, they can be more focused on either the
visualization itself or domain-specific data quality checking.

(G2): A function which can accept datasets from the user side and
present them using Vega-Lite specifications.

This is a key feature, which, however, is missing in
StatCheck1.0. At the end of the day, we would like this toolkit
to be beneficial to users’ daily routine, meaning that users can
test any datasets they would encounter. Although it is generally
hard to support a huge dataset space, allowing the user to try
certain kinds of datasets definitely can enhance the usability of
the toolkit.

(G3): An interface that is in a clear layout, within which visual
components are separated appropriately.

We require the overall interface to be easy-to-understand and
clear: users should be able to comprehend how to navigate
through the system in a short learning period; We also require
the components within the interface to be consistent: at the
same time, each component should be presenting something
meaningful in terms of the same dataset. We don’t want to
confuse or mislead the user, which is the case we usually
observe when trying StatCheck1.0.

(G4): An interactive and educative visual recommendation compo-
nent containing necessary explanations and possible solutions
for detected data issues.

In addition to presenting the detected data issues and a rec-
ommended visualization (as what it is in StatCheck1.0), we
argue that more interactions should be added in the recommen-
dation component to (1) allow the user to adapt their domain
knowledge (if any) to accept or ignore some detected issues,
and (2) educate the user about how the detection process is and
potential solutions one can choose from. We want to make sure
that we are making suggestions over possible issues the dataset
has, and ensure the user the control over which suggestions to
take.

In summary, our design goals focus on the validness of the data
issues we provide, the organized and consistent components that
can work together properly, the ability of the user to test their own
datasets and interact with the detected results to better understand
and visualize their datasets.

4 ARCHITECTURE

In this section, we give a high-level overview of the different com-
ponents of our system. We follow the client-server architecture
from StatCheck1.0, with a front-end who processes the user input,
passes it to the back-end and then displays the information returned
accordingly, as well as a back-end who runs the statistical anomaly

Figure 1: The overall front-end structure of our system

detection functions on the given dataset filters erroneous data and
passes all the necessary results back to the front-end. We present the
overall front-end structure of our system in Figure 1 and introduce
the functionality of each highlighted component. We will detail the
back-end in the next section.

There are six major components in the front-end, as shown in
Figure 1:

(C1): This component receives the user inputs specifying they are
testing either a demo dataset or a customized dataset. For
demos, the user can select the chart type and the targeted data
issue to display; for a customized dataset the system would au-
tomatically generate the corresponding Vega-lite specification
and run data issue checking.

(C2): This component displays the corresponding Vega-lite specifi-
cation to the user input over the dataset. Notice that the user
can directly edit the code inside to meet any personal need.

(C3): This component presents the generated visualization without
any dataset modification.

(C4): This component presents detected data issues if any as well
as necessary explanations and potential solutions. For certain
issues, the system has interactive widgets that allow the user
to test different solutions.

(C5): This component displays all the data points related to any
detected data issues. If there are too many, the system will
provide a slider on the right.

(C6): This component displays the recommended visualization after
the solutions to detected data issues is applied. The user can
accept this chart by clicking the ”Accept this spec” button
below if they are satisfied.

5 METHODS

5.1 Improved Design
Based on G2 and G3, we notice that the previous iteration of this
prototype provides an unintuitive, complicated interface. The old
system has two modes, called “Demo Mode” and “Test Your Own”
modes, however, this design is very confusing. There is a Vega-Lite
specification created for the “Test Your Own” mode, and the “Demo
Mode” provides preset specifications for the issues, however this
creates a scenario where there are two different specifications and it
is not clear which one is displayed. Also considering that “Demo
Mode” fetches the specification from the system and does not show
it to the user, it is not easy to use these ‘modes’ for the users. In fact,
our team was confused by this design as the “users” of the system
when we were gaining familiarity with the project. In addition, we
observe that the old system does not enable users to quickly im-
port their external datasets, which makes the data checking process
inconvenient. Because of these reasons, we implement an alterna-
tive design. Our rationale for the design is that the components
of the interface should be consistent and should not lead users to
misleading conclusions, and the users should always be able to see
the specification of the visualization and iteratively interact with it
so that when our system displays an issue, they can easily match the
issue with the specification. Also, we expect that users will have a
dataset file, such as a “.csv” file, instead of a Vega-Lite specification,
therefore importing an external dataset and automatically creating
the Vega-Lite specification is essential. Otherwise, the functional-
ities of the system would not be very beneficial to the users. The
comparison of the data and Vega-Lite specification panels for the
different versions of StatsCheck is given in Figure 2.

We first remove the “Demo” and “Test Your Own” modes, and
merge the functionalities into one. We use the same preset specifica-
tions from the previous version for various types of charts and data

(a) Data and Vega-Lite specification panel of the previous prototype.

(b) Our design of data and Vega-Lite specification panel.

Figure 2: Comparison of data and Vega-Lite specification panels.

issues and also add new preset specifications for our implemented
issues. The users can analyze the provided demo datasets by gen-
erating a specification with the desired chart and issue, as seen in
C1. When the dataset is fetched from the system, the correspond-
ing Vega-Lite specification is generated in C2 and the system starts
detecting data issues, if there are any. Accordingly, C3, C4, C5,
and C6 are updated depending on the output of the issue detection
system.

The demo datasets are provided so that the users can gain famil-
iarity with the program, however, in order to produce a meaningful
results, we need to process the users’ custom datasets. The users can
submit their datasets either in a tabular format containing comma-
separated values as the data records, or as a Vega-Lite specification
file. If they submit a tabular formatted data, we automatically gener-
ate the Vega-Lite specification, and display it in C2. The system then
proceeds to check the issues in the same way as before. Moreover,
the users can interactively edit the specification code in C2, so that
they can directly see the effect of a modification to the dataset, even

Figure 3: Error message displayed to the users.

if the modification to the visualization are for exploratory purposes.
Apart from the aforementioned issues, there is another problem

of the previous iteration. If there are errors in the format of the Vega-
Lite specification in C2, which can easily and regularly happen, the
old version of the system is completely unresponsive to the user. The
program internally throws an error, however, the user is not notified
of this error at all. Also considering that the system keeps the output
of the previous visualization, this creates a scenario where the output
and the specification are not consistent again. A non-expert user is
not likely to realize this, and will continue to use the system and
accept the output, which is misleading. We alleviate this problem
by removing the previously generated output if there are errors and
by displaying an error message to the user instead. An example of
the error message is given in Figure 3. For the user side, taking
an action based on the error message might require some technical
knowledge, since our message includes terms such as “JSON” and
“SyntaxError”, however, even if the user is not able to fix the error,
we notify the user that something went wrong and we do not display
a potentially misleading output.

With our improvements, our design effectively achieves G2 and
G3, as all components are always in synchrony and consistent, users
can utilize the system using their dataset, and there are no misleading
outputs in the presence of errors.

5.2 Duplicate Entry Check

As we mentioned, one of our goals, G1, is to detect commonly
seen data issues. The previous iteration of StatsCheck deals with
a set of issues, however, we notice that there is another candidate
statistical issue that we can solve, which is the detection of duplicate
entries. We add this to the set of data issues the system is checking to
cover more potential issues, and raise a warning if there are multiple

Figure 4: Duplicate entry check.

entries with the same independent variable and they are not properly
handled, e.g., by aggregation.

When we detect duplicate values, we first display the entries
that are flagged as erroneous and offer two main options to resolve,
aggregating the values (default option) or omitting them from the
dataset. Within the aggregation option, we also have minor options
to choose an aggregation function as well, which include average,
maximum, median, minimum, and sum. Since there might be var-
ious reasons behind the duplicate entries in the dataset, instead of
assuming a ‘best practice’, we make our system flexible with these
multiple resolution options. In the end, it should be easy for users
to find the most suitable approach, as we allow them to preview the
resolutions one by one and provide visualization for each. An exam-
ple of this functionality using the aggregate option with minimum
as the function is given in Figure 4.

5.3 Improved Outlier and Asymmetrical Distribution De-
tection

To better achieve G1, we further improved the outlier detection
and asymmetrical distribution detection of the previous iteration
of StatsCheck. The original outlier detection used a hard-coded
1.5× IQR rule to determine outliers, which we consider inflexible.
Instead, our new outlier detection method based on the assumption
that quantitative columns of the data follow a Gaussian distribution.
Note that the user can choose to omit the issue if she does not
think that the data follows a Gaussian distribution, as we will see in
Section 5.5. Formally, the process goes as follows: Assume that we
have n data points. First, we compute the mean~µ and the covariance
matrix Σ of the dataset. For notational simplicity we assume that Σ is
diagonal. Note that for the general case, we can unitarily diagonalize
Σ as Σ =U†DU and then apply the linear transformation U to data
points. This way the problem is reduced to the case of diagonal Σ.
Then, suppose there is a suspicious data point ~x0 and we want to
calculate how unlikely it appears. To do that, let us assume that we
have a dataset that consists of n samples drawn from~x∼N (~µ,Σ)
i.i.d. The probability of us not spotting a data point “as suspicious
as ~x0” will be

p :=
(

Pr
~x∼N (~µ,Σ)

[|D−1/2~x|< |D−1/2~x0|]
)n

.

Therefore 1− p correctly measures how certain ~x0 is an outlier. By
default, we label all ~x0 with associated probability higher than 0.95

Figure 5: Outlier detection.

(i.e., p < 0.05). The user, however, is possible to choose a different
threshold value she likes, as shown in Figure 5.

We also updated the asymmetrical distribution check. The basic
idea is that the system will recommend to use aggregation method
“median” rather than ”averge” if the data distribution is highly biased.
The original method does not make much sense: they simply check,
using the 68 rule, that whether the data distribution is Gaussian.
However, being Gaussian or not is irrelevant to the bias. Instead, our
approach is that the data distribution will be considered biased if the
average does not lie in the middle third of the data distribution, i.e.,
between 33% and 67% quantiles. An example is shown in Figure 6.

Figure 6: Asymmetric distribution check.

5.4 Axis-aligned Spread Check
We also introduce an additional, minor issue checking process which
is more closely related to the Vega-Lite framework than the dataset.
However, this process is still based on the dataset statistics and can be
beneficial for the users. Therefore, we relate this functionality to our
G1 goal, as it has the aim of increasing the quality of the generated
visualization. When we look at the spread of the distribution for each
attribute in order to detect if there is an asymmetrical distribution,
we can only explain the spread of the data parallel to the axes of the
attributes. However, if we consider a 2D feature space, e.g. in x and
y dimensions, it is likely that the distribution will have a diagonal
correlation that cannot be explained by σ(x) and σ(y). Therefore
we also need to perform checks based on the covariance of the data
to specifically address the distribution in the 2D feature space.

By utilizing the covariance matrix, we can infer information about
the shape of the distribution. Here, we assume that the data comes
from a multivariate normal distribution. Based on the covariance
matrix, we can capture the diagonal and axis-aligned spread. We use
this information to overcome one weakness of Vega-Lite.

In Vega-Lite, when we plot a 2D data, the system creates default
ranges for each axis separately. However, if there is a significant dif-
ference between the axis-aligned spread for each axis, this can result
in having a false sense of the shape of the distribution. An example
plot demonstrating this behavior is given in Figure 7a. In the plot,
it seems like the data has a ‘circular’ shape, but this is misleading
because y values have an approximate range of [−30,20] whereas
x values have an approximate range of [−3,3]. Therefore the data
actually has a ‘vertical’ shape, as seen in Figure 7b. A non-expert
user might not realize this issue, and proceed to draw conclusions by
“visually” analyzing the data distribution while ignoring the discrep-
ancies in the feature domains caused by the different magnitudes of
spread. Because of this reason, our system warns the users when
this problem is detected.

When a user enters a data containing 2 quantitative attributes,
assuming that it has a multivariate normal distribution, we check

(a) Example plot demonstrating the au-
tomatically generated ranges created by
Vega-Lite for each axis. Note the differ-
ence between the range of x and y-axes.

(b) Example output showing that the sug-
gested ranges display the correct shape of
the distribution.

Figure 7: Displaying the correct shape of the data based on the
axis-aligned spread.

each of the axis-aligned spread. Knowing that the Vega-Lite “zooms
in” each axis separately, we calculate the ratio of larger spread to
the smaller one and if the ratio is greater than a threshold value
(defaulted to 2), our system suggests custom ranges to the user to
display the correct shape of the data. The suggested ranges are
the same, the range is the largest span that covers each data point.
Therefore, this method is quite simple yet effective. An example
output that uses the suggested ranges is given in Figure 7b.

5.5 User Interactions
In the previous iteration of StatsCheck, the process is just that the
user submits a Vega-Lite specification and she will then see a static
recommendation. This is barely interactive. To achieve G4, we
added the following ingredients:

Issue Explanation. For each issue we have detected, an ex-
planation is shown, which is supposed to be understandable to non-
experts.

Multiple Solution. For almost each type of issue, the user has
freedom to choose a recommendation from multiple options. Two
examples are the slider in Figure 5 and the selection boxes in Fig-
ure 4. Or, the user can choose to omit certain issues by clicking on
the small red cross symbol to the left of a detected issue type shown
in C4.

Specification Adoption. The user can choose to adopt the
specification recommended to C2. Sometimes this is helpful for
iterative issue checking as we cannot do that by default: For example,
if there is a detected outlier, removing it will result in an update of
the mean and the covariance matrix (refer to Section 5.3), which
may result in new outliers detected. However, we cannot remove the
initial outlier until the user explicitly confirms.

6 EVALUATION

This section details the small-scale study we conducted in order to
evaluate our prototype system. We hope to gauge how useful our
system is for finding potential statistical issues in visualizations and,
further, that the system is effective at interactively resolving these
potential issues.

The design of this study was inspired by a study done on
StatCheck1.0. Many of the design choices we made were inspired
by the feedback received from the previous evaluation. The hope is
that, by conducting a similar study and comparing the results, we
will have shown that the tool has been improved and received better
than its previous iteration.

All surveys were done remotely via Zoom. The participant would
be accompanied by one of the group members, who had the tool
running on their machine. This would be shared with the participant
via a screen share; in order to interact with the tool, the participant
would tell us what interactions they wanted to perform, and we
would do it for them.

Before the survey began, each participant was given the same
introduction on how the tool worked. The participant would learn
how to load the example datasets, how the tool provides feedback,
and how the user could resolve each of the issues interactively.

Each participant would then go through five sample datasets.
These correspond to the four main issues we check for (asymmetrical
distribution, outliers, missing values, and duplicate entries), and a
fifth dataset with no issues. Once the participant had generated the
Vega-Lite specification for a dataset via the built-in functionality,
they would be asked to interact with the tool until they felt that the
updated plot had been resolved of all issues. This resolution could
be done by either using one of the suggested resolution methods or
by dismissing the issues that were raised. Note that the task ended
when the user felt the visualization was absolved of all issues, not
when the tool thought the visualization was absolved of all issues.

For each example dataset, the user answered three questions, all
of which were provided on a Google form:

1. What potential problems were flagged, if any?

2. Did you find the feedback provided useful?

3. If an issue was detected, were you able to find a resolution that
you felt solved the issue?

Question 1 was asked as a means of quality control. We wanted
to ensure that the user understood what the tool was communicating.
Should a user answer this question incorrectly, the data would have
been removed from our results. Participants entered their responses
into a text field for this question.

The results of Questions 2 were meant to gauge how well-received
the feedback was. We wanted to see if the tool was effective at
flagging issues that are both informative to the user and things
that should be remedied. Question 2 was answered on a 5 point
Likert scale, with 1 denoting definitely not useful and 5 denoting
definitely useful. If no issue was raised, this question was omitted.
Both Questions 1 and 2 were similar to the study conducted on
StatCheck1.0.

Finally, Question 3 is concerned with how well the user is able
to interact with our tool. Compared to StatCheck1.0, we wanted to
make the system more interactive and flexible for the user. Thus,
we wanted to collect data on how well the system is able to resolve
the potential issues it raises from the user’s perspective. The pre-
vious study asked a similar question: ”Would you have selected
the updated visualization?” We note that the resolution process now
involves a back-and-forth exchange between the user and the system,
and we updated this question to reflect this change. Question 3 was
recorded as a yes or no if an issue was detected, and was omitted
otherwise.

Upon completion of the above three questions for all five sample
datasets, we asked follow-up questions to gauge the user’s overall
experience with the tool and the study itself. In particular, we asked
the following:

• How easy were the questions in this survey to answer? This
was collected on a 5 point Likert scale, with 1 denoting very
hard and 5 denoting very easy.

• Rate your agreement with the following statement: ”The tool
would be useful to design better visualizations.” This was also
collected on a 5 point Likert scale, with 1 denoting strong
disagreement and 5 denoting strong agreement.

• What additional features, if any, do you wish the system in-
cluded? Users entered their responses into a text box.

• Are there any other comments or suggestions you might have?
Users entered their responses into a text box.

The first question was asked to ensure that the survey and its
corresponding tasks were straightforward and well-defined, while
the second question was asked to gauge the overall user satisfaction
with the system. The last two questions were added to allow for
open ended feedback and critique from the user, should they feel the
need to express their thoughts outside the scope of the survey.

We neglected to collect demographical information on the partic-
ipants of our study. This was mainly due to the small scale of the
study. Informally, the participants were all young adults who were
both technologically savvy and data savvy. The race and gender
identifications varied across participants. We note that the target
audience of our tool also includes less data-inclined users, and the
study may not accurately reflect this group.

In total, we amassed four participants for our study. While cer-
tainly not a large enough sample to make generalizations about the
system’s performance, it does provide some initial insight. Further,
we note that the previous study of StatCheck1.0 also included four
participants, so it is possible to compare the results between studies
without extrapolating.

Finally, the participants were encouraged to ask clarifying ques-
tions and voice their thoughts during the study. While these were
not formally recorded, they may be referenced to provide context to
the results we present.

7 RESULTS

This section presents the results of the evaluation study we per-
formed, described in detail in Section 6. We provide the results
from the perspective of three success metrics. To begin with, we
look at the users’ overall sentiment by analyzing the questions asked
at the end of the survey. Next, we connect the results of working
through the example datasets to the design goals listed in Section 3
to determine if we have met these goals. Finally, we compare our
results to the study performed on StatCheck1.0 to demonstrate the
tool has been improved.

7.1 Analyzing Overall User Experience
We begin by first analyzing the questions asked at the end of the
survey. These questions were asked to gauge the overall experience
the users had with our tool and the study itself. This will give us
a high-level view of the sentiment toward our tool before delving
deeper into the specific examples.

First, we note that, when asked how easy the questions in the
survey were to answer, all four participants responded with ”Very
Easy”, i.e. a 5 on the Likert scale. This indicates that the survey was
indeed well-defined and straightforward for the users to complete
and that we should have no qualms with accepting this data as
accurate.

The other required question was to rate agreement with the state-
ment ”the tool would be useful to design better visualizations”. The
results are presented in Figure 8. With an average of 4, we can see
that the users generally felt that our system helps with designing
visualizations. It is also worth noting that the user who submitted a
3 viewed the system more as a data-refining tool than a visualization
tool.

Finally, the users were able to leave comments about other fea-
tures they would like to see incorporated into the system. Two users
both mentioned that they wish there was a way to export the results
that had been freed of the issues we raised. Indeed, this would be
a useful feature, but fell beyond the scope of our project; our goals
were more focused with getting data into the system rather than
exporting it out. We leave such a feature to future work.

Figure 8: Results of Agreement, with 5 denoting strong agreement

We conclude that the overall sentiment towards our system was
generally positive and that most of the negative sentiments were
caused by a lack of of features rather than the system itself.

7.2 Examining Example Dataset Survey Responses
Of the three questions participants answered for each sample dataset,
we begin by examining the first question. They were asked to
confirm the issues that the tool raised for the dataset, and they entered
them into a text box. Each user was correctly able to reiterate what
issues were being raised, if any. We submit this as evidence for G3,
as the users were able to load the pre-built examples and identify the
issues raised without much confusion.

The other question where users seemed unanimous was the third
question, where we asked if they were able to resolve all of the
issues raised by the system. Across all datasets, all four participants
responded that they were able to resolve the issues with each visu-
alization. Note that the user could resolve issues by accepting or
rejecting the proposed solutions; we view this as an achievement
of the interactive nature of our system and accept this as evidence
towards completing G4.

For the second question, we collected information on how useful
each participant found the information displayed for each dataset.
When looking at the results, we see an emerging dichotomy of
the data issues. The first group of issues consists of outliers and
asymmetrical distribution, which we label as ”statistical issues”.
The second group contains duplicate entries and missing values,
henceforth ”integrity issues”. Each feature in the two groups had the
same distribution of responses, so we present a graph for each of the
two groups in Figure 9.

(a) How useful each participant found the
check for outliers and asymmetrical distri-
bution, with 5 denoting very useful.

(b) How useful each participant found the
check for missing values and duplicate en-
tries, with 5 denoting very useful.

Figure 9: A side-by-side comparison of the reception of statistical
issues versus integrity issues.

In particular, we see that integrity issues are very well received,
with every participant finding this warning very useful. Conversely,
while the statistical issues are still useful, they are significantly less
useful than the integrity issues, with the average dropping from a
5 to 3.75. While not formally recorded, we did observe that users
were more likely to reject the suggestions for the statistical issues
than the integrity issues, which may explain this discrepancy.

Given that all four issues are positively received, we consider
G1 to be a success. While certainly not an exhaustive list, we have
incorporated several issues that users want to know about and resolve.

We make note of the more lukewarm reception to the statistical issues
and conjecture that this is due to the users’ inclination to reject our
recommendations rather than accept them.

7.3 Comparison to Previous Study

Finally, we can compare the results of our study to the study con-
ducted on StatCheck1.0. The studies were similar in many ways;
both studies amassed four participants and guided the users through
datasets containing issues the system would check for. As such, it is
fair to make direct comparisons between the two studies.

Perhaps unsurprisingly, we see similar patterns emerge from
both studies. The treatment of missing values was well received
by both sets of participants, while asymmetrical distribution was
more poorly (but still positively) received. Further, most of the
information provided by the system was deemed useful, with only
one instance in the previous study of a user finding the information
returned not useful.

The one key difference between the two studies lies in how
the users went about resolving the issues the system raised. In
StatCheck1.0, there was no interaction during the resolution phase
of issues; users were asked how likely they would be to adopt the
system’s recommendations on a 5 point Likert scale. Conversely,
our version of StatCheck allows the user to interactively solve issues
or ignore them entirely; we instead asked if the user had found a
way to resolve all of the issues with the plot.

As such, we saw a marked improvement in this area. The previous
study made note of at least four instances where the users indicated
they may or may not accept the recommendations or would definitely
not accept the recommendations. In our study, every single instance
was able to be solved in the opinions of our users. We chalk this
up as another success towards G4, as we have quantifiably shown
that the interactions we have added allow the users to create new
visualizations that consider correct.

We conclude with some notes about G2. Our study did not
examine how well the system is able to accept user-made datasets
as it instead opted to work with pre-made datasets that highlight the
issues we check for. However, we did receive a comment about this
feature as we introduced the tool. One user expressed confusion over
the chart type selection option as it pertained to uploaded datasets.
This selection only applies to the example datasets; to change the
type chart for an uploaded dataset, one would have to directly edit
the Vega-Lite specification. We admit this is a failure of both G2
and G3, as the layout is confusing when uploading datasets and we
do not have a simple way for users to change the chart types for their
uploaded data.

8 DISCUSSION AND FUTURE WORK

In this project, we extend StatCheck1.0, a previous prototype, to
make a more powerful and interactive visualization recommendation
system that automatically helps the user check potential data issues
within their datasets. We test StatCheck1.0 and fundamentally im-
prove the system mainly through (1) cleaning up and reorganizing
the front end, (2) supporting user-specified datasets, and (3) allowing
more interactions between the user and the system. We present a
study in which 4 participants tested the system with five datasets.
We use the resulting data to validate the effectiveness and usability
of our improved system. In the following subsections we talk about
the major takeaways, limitations and future directions.

8.1 Takeaways

Based on what we have learned along the way, we provide the
following takeaways that one could get from our project.

1. Injecting data issue checking into visualization tools will
benefit many users.

As we explained before, nowadays visualization tools tend to
be pretty easy-to-use even for users without sufficient knowl-
edge about programming. Users can easily generate visualiza-
tions in an end-to-end manner (from data to charts). However,
such systems cannot guarantee the validness of the visualiza-
tions from the data perspective, meaning that they cannot help
fix any data issues that might exist within the users’ datasets.
It is usually left up to the user to have some requisite training
to finish necessary data cleaning, checking, and analyzing jobs
so as to ensure the quality of the data, which cannot be much
expected since novice users who may not have data processing
experiences are also encouraged to try those visualization sys-
tems. It is best to have some data checking tools built inside the
visualization systems that can help resolve the above problem.

On the play-test-day, we got a comment from one audience
saying “this tool looks cool, could it be implemented in Jupyter
Notebook?”, which indicates that performing data issue check-
ing is indeed a useful feature for broad users while is currently
missing in most of the programming languages or visualiza-
tion tools. The results of our user study also show that all
participants are mostly positive toward the usefulness of our
data-issue-checking-based recommendation system.

2. Interaction is easy, educational interaction is hard.

One of our major contributions is the design and implementa-
tion of several additional interactions between the user and the
detected results. The motivation behind this is that we want to
“educate” the user to better understand what is going on inside
the checking procedure through interacting with the results pro-
vided by the system. This might also help the user understand
their dataset better. However, how to achieve clear educational
guidance without elaborating much with statistics is found to
be hard. For example, our outlier checking is based on the
assumption of normal distribution, and a slider controlling the
filter threshold is provided (please see Section 5.5 for details).
We observe in the user study that several participants didn’t get
the functionality of the slider at the beginning. Although we
provide some textual explanations above the slider, it is always
the visual object, a.k.a., the slider, that attracts the user’s atten-
tion first. We also find it hard to achieve a balance between
space efficiency and understandable statistical explanations.

3. We should always pay attention to any bias concern when
designing visualization systems.

When brainstorming over possible extensions of the data is-
sues, we came up with an idea that recommending to the user
attribute combinations that have higher correlations than the
user specifies if more attributes are available. At that time, we
thought this could be a cool feature that is useful to novice
users. However, in the progress meeting, we’ve been told that
this falls into the category of p-hacking, which is a common is-
sue related to bias concerns. Later we took the bias lecture and
gained a better understanding of the bias concerns in visualiza-
tion and more generally data science. On this specific project,
we have to keep in mind that we are only making suggestions
over the user’s data other than directly or indirectly telling the
user what is right or wrong; ignoring the bias concerns could
result in invalid visualizations especially for novice users who
just start in this field. This is an important lesson we learned
no only for this project, but also for any systems we will build
in the future.

8.2 Limitations
Due to technique difficulty and limited time, we list three major
limitations of out system:

1. Only support two-dimensional datasets.
Currently the system only supports data issue checking over
two-dimensional datasets, which is implementation-friendly
and doable in a limited time period. However, it is definitely
needed to support datasets with more columns since the most
important goal of this project is to make the tool useful for
customized datasets (which varies in many ways like number of
columns, types of attributes and number of rows). So without
extending to more general datasets, our system is to some
extent limited in terms of capacity.

Obviously, extending to more general datasets is not an easy
task. Several things need to be taken care of, such as gener-
alizing the current detection functions to multi-dimensional
cases and determining what certain user inputs are needed for
complex user-specified datasets. Since this more lies in the
statistics field other than visualization, we didn’t consider it as
a goal in our project.

2. Optimization over the detection procedure is needed.
Currently, there is no back-end optimization existing (all the
calculations happen at the Python server), making a notice-
able latency for certain kinds of data issue checking, e.g.,
outlier checking for the example dataset we provided. It is
possible that the user uploads a huge dataset (even it is two-
dimensional), and observing a latency probably would down-
grade the user’s experience with our system. How to handle
this case efficiently is currently not well-considered, and we
leave it as future work.

3. The user study is not perfect.
Our current user study involves 4 participants, which is not
ideally large for us to obtain enough insights and further im-
prove the system. Also, due to the inconvenience of conducting
evaluations remotely, we didn’t include the personal dataset
uploading feature as a part of the evaluation, which might
cause a loss of suggestions regarding that feature.

8.3 Future Work
Apart from the above limitations that can be considered, we list three
potential future directions that can be explored to further improve
our system:

1. Supporting user-specified checking criterion. In the case
where the user wants to check over some domain-knowledge-
related issues, we can consider letting the user input the check-
ing criterion in a specific form such that we can integrate that
criterion to check the dataset given.

2. Providing options to export the recommendation visualiza-
tion into codes using other visualization languages. This
was suggested by one of our participants in the user study, who
wanted to turn the resulting Vega-Lite specifications into D3
codes. We agree with this advice and think this could benefit
users from various backgrounds.

3. Making the interface more visually appealing. Our current
implementation for the interface follows StatCheck1.0 and is
a bit old-school. It would be interesting to modernize the
interface to make it visually more attractive.

9 CONCLUSION

In this project, we proposed fundamental improvements over a pre-
vious prototype StatCheck1.0 mainly regarding front-end designs,
refined data checking methods and educative user interactions to
provide a visualization recommendation system within which an au-
tomatic statistical data issue checking feature is implemented. Such

a system helps novice users get started with visualization and more
broadly data science, and assists expert users with data-cleaning to
save time. We validate the usability and effectiveness of our system
either textually using the learnt principles or by our user study. Al-
though the goals of this project is in general fulfilled, we do think
there are many ways we can further improve our system to allow bet-
ter sense of control over both the dataset and the checking criterion
from the user side, which makes it a useful system for broad users.
Ultimately we would like to see the ideas within our project would
be maturely engineered into valid features in modern visualization
frameworks.

10 TEAM MEMBER CONTRIBUTIONS

• Suleyman: He contributed to the alternative front-end design
with Chen by synchronizing the components, and implemented
detecting errors in the Vega-Lite specification and notifying
the users about them. He added the options as the aggrega-
tion functions for the duplicate entry check, and designed and
implemented the axis-aligned spread checking. He wrote sec-
tions 5.1, 5.2, and 5.4, and came up with and implemented
two ideas that did not make into the final version, checking the
statistical significance which is abandoned due to p-hacking
issue, and syntax highlighting of Vega-Lite specification which
is disabled due to the bugs in the underlying framework Prism.
He prepared the presentation video with Ethan.

• Chen: He led most of the team meetings and the task separa-
tions. As for the implementation, he (1) reorganized the visual
components into the current shape; (2) added the personal
data uploading function & automatic Vega-Lite specification
generalization. As for the ideas, he assisted Yufan to form
the interaction design of the outlier checking. As for the user
study, he collected one data point and assisted Ethan to get one
another. As for the writing, he accounted for the Introduction
/ Design Goals / Architecture / Discussion and Future Work /
Conclusion sections. He together with Yufan led the progress
meeting.

• Ethan: He wrote the Evaluation and Results sections of the
report. In the code, he implemented the checking for duplicate
entries, the interactive resolutions for missing and duplicate
entries (C4), and printing the erroneous tuples (C5). He also
led most of the playtest demo alongside Tianshu and presented
most of the presentation video alongside Suleyman. He de-
signed the evaluation study and conducted most of the studies,
alongside Chen.

• Tianshu: He led part of the team meeting, the play test day
demo along with Ethan, and led on the presentation video
slides. He also make contribution to sections in the project
report. Moreover, he contribute ideas to proposing on user in-
terface design, and solving data issues including out-of-domain
entries, missing time series data, longitude, latitude, zip etc.

• Yufan: He implemented the new outlier and asymmetrical
distribution detection (Section 5.3). He realized the “omit”
buttons mentioned in Section 5.5. He also contributed minor
changes and bug fixes to other components, e.g., data upload-
ing feature and C5. For ideas, he, with assistance of Chen,
came up with ideas about functionalities just mentioned. He
and Chen also proposed an interesting idea of differential in-
fluence of data points, which was finally abandoned on the
progress meeting because this notion is visualization-based but
not statistics-based. He together with Chen led the progress
meeting. He was responsible for writing of Section 5.3 and
5.5.

REFERENCES

[1] The pyplot package. https://matplotlib.org/stable/

tutorials/introductory/pyplot.html. Accessed: 2021-05-16.
[2] Tableau. https://www.tableau.com/. Accessed: 2021-05-16.
[3] Vega: a visualization grammar, Apr. 2021. original-date: 2013-02-

03T18:36:30Z.
[4] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouz-

zani, P. Papotti, M. Stonebraker, and N. Tang. Detecting data errors:
Where are we and what needs to be done? Proceedings of the VLDB
Endowment, 9(12):993–1004, 2016.

[5] J. Aerts, N. Gehlenborg, G. E. Marai, and K. K. Nieselt. Visualization
of biological data-crossroads (dagstuhl seminar 18161). In Dagstuhl
Reports, vol. 8. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

[6] V. Balaji and B. Lucia. Combining data duplication and graph re-
ordering to accelerate parallel graph processing. In Proceedings of
the 28th International Symposium on High-Performance Parallel and
Distributed Computing, pp. 133–144, 2019.

[7] L. Battle, R. Chang, and M. Stonebraker. Dynamic prefetching of
data tiles for interactive visualization. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD ’16, p.
1363–1375. Association for Computing Machinery, New York, NY,
USA, 2016. doi: 10.1145/2882903.2882919

[8] N. Bikakis. Big data visualization tools, 2018.
[9] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven docu-

ments. IEEE transactions on visualization and computer graphics,
17(12):2301–2309, 2011.

[10] S. Bresciani and M. J. Eppler. The pitfalls of visual representations:
A review and classification of common errors made while designing
and interpreting visualizations. Sage Open, 5(4):2158244015611451,
2015.

[11] E. T. Brown, A. Ottley, H. Zhao, Q. Lin, R. Souvenir, A. Endert, and
R. Chang. Finding waldo: Learning about users from their interac-
tions. IEEE Transactions on Visualization and Computer Graphics,
20(12):1663–1672, 2014. doi: 10.1109/TVCG.2014.2346575

[12] S. Cateni, V. Colla, and M. Vannucci. A fuzzy logic-based method
for outliers detection. In Artificial Intelligence and Applications, pp.
605–610, 2007.

[13] W. Chen, P. Liu, C. Zhang, M. Yan, R. Zhao, and B. Li. Development
and research of agricultural big data visualization system.

[14] A. Chowdhury and J. Alspector. Data duplication: an imbalance
problem? In ICML’2003 Workshop on Learning from Imbalanced
Data Sets (II), Washington, DC, 2003.

[15] P. R. Doshi, E. A. Rundensteiner, and M. O. Ward. Prefetching for
visual data exploration. In Proceedings of the Eighth International
Conference on Database Systems for Advanced Applications, DASFAA
’03, p. 195. IEEE Computer Society, USA, 2003.

[16] S. Dray and J. Josse. Principal component analysis with missing values:
a comparative survey of methods. Plant Ecology, 216(5):657–667,
2015.

[17] D. Gotz and Z. Wen. Behavior-driven visualization recommendation.
In Proceedings of the 14th International Conference on Intelligent User
Interfaces, IUI ’09, p. 315–324. Association for Computing Machinery,
New York, NY, USA, 2009. doi: 10.1145/1502650.1502695

[18] T. Gschwandtner, J. Gärtner, W. Aigner, and S. Miksch. A taxonomy
of dirty time-oriented data. In International Conference on Availability,
Reliability, and Security, pp. 58–72. Springer, 2012.

[19] F. Haneem, R. Ali, N. Kama, and S. Basri. Resolving data duplication,
inaccuracy and inconsistency issues using master data management. In
2017 International Conference on Research and Innovation in Infor-
mation Systems (ICRIIS), pp. 1–6. IEEE, 2017.

[20] J. Heer and M. Bostock. Crowdsourcing graphical perception: Using
mechanical turk to assess visualization design. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’10, p. 203–212. Association for Computing Machinery, New York,
NY, USA, 2010. doi: 10.1145/1753326.1753357

[21] A. Ilin and T. Raiko. Practical approaches to principal component
analysis in the presence of missing values. The Journal of Machine
Learning Research, 11:1957–2000, 2010.

https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://www.tableau.com/
https://github.com/vega/vega
https://github.com/vega/vega
https://github.com/vega/vega
https://github.com/vega/vega
https://doi.org/10.1145/2882903.2882919
https://doi.org/10.1145/2882903.2882919
https://doi.org/10.1145/2882903.2882919
https://doi.org/10.1145/2882903.2882919
https://doi.org/10.1145/2882903.2882919
https://doi.org/10.1145/2882903.2882919
https://doi.org/10.1145/2882903.2882919
https://doi.org/10.1145/2882903.2882919
https://doi.org/10.1145/2882903.2882919
https://doi.org/10.1145/2882903.2882919
https://doi.org/10.1145/2882903.2882919
https://doi.org/10.1145/2882903.2882919
https://doi.org/10.1145/2882903.2882919
https://doi.org/10.1109/TVCG.2014.2346575
https://doi.org/10.1109/TVCG.2014.2346575
https://doi.org/10.1109/TVCG.2014.2346575
https://doi.org/10.1109/TVCG.2014.2346575
https://doi.org/10.1109/TVCG.2014.2346575
https://doi.org/10.1109/TVCG.2014.2346575
https://doi.org/10.1109/TVCG.2014.2346575
https://doi.org/10.1109/TVCG.2014.2346575
https://doi.org/10.1145/1502650.1502695
https://doi.org/10.1145/1502650.1502695
https://doi.org/10.1145/1502650.1502695
https://doi.org/10.1145/1502650.1502695
https://doi.org/10.1145/1502650.1502695
https://doi.org/10.1145/1502650.1502695
https://doi.org/10.1145/1502650.1502695
https://doi.org/10.1145/1502650.1502695
https://doi.org/10.1145/1502650.1502695
https://doi.org/10.1145/1502650.1502695
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/1753326.1753357

[22] M.-F. Jiang, S.-S. Tseng, and C.-M. Su. Two-phase clustering process
for outliers detection. Pattern recognition letters, 22(6-7):691–700,
2001.

[23] M. Jimichi, D. Miyamoto, C. Saka, and S. Nagata. Visualization and
statistical modeling of financial big data: double-log modeling with
skew-symmetric error distributions. Japanese Journal of Statistics and
Data Science, 1(2):347–371, 2018.

[24] J. Kaiser. Dealing with missing values in data. Journal of systems
integration, 5(1):42–51, 2014.

[25] D. A. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler. Chal-
lenges in visual data analysis. In Tenth International Conference on
Information Visualisation (IV’06), pp. 9–16. IEEE, 2006.

[26] I. Ko and H. Chang. Interactive data visualization based on con-
ventional statistical findings for antihypertensive prescriptions using
national health insurance claims data. International Journal of Medical
Informatics, 116:1–8, 2018. doi: 10.1016/j.ijmedinf.2018.05.003

[27] J. Kohlhammer, D. Keim, M. Pohl, G. Santucci, and G. Andrienko.
Solving problems with visual analytics. Procedia Computer Science,
7:117–120, 2011.

[28] R. Little and H. An. Robust likelihood-based analysis of multivariate
data with missing values. Statistica Sinica, pp. 949–968, 2004.

[29] S. Liu, G. Andrienko, Y. Wu, N. Cao, L. Jiang, C. Shi, Y.-S. Wang, and
S. Hong. Steering data quality with visual analytics: The complexity
challenge. Visual Informatics, 2(4):191–197, 2018.

[30] Y. Luo, X. Qin, N. Tang, and G. Li. Deepeye: Towards automatic data
visualization. In 2018 IEEE 34th International Conference on Data
Engineering (ICDE), pp. 101–112, 2018. doi: 10.1109/ICDE.2018.
00019

[31] E. Rahm and H. H. Do. Data cleaning: Problems and current ap-
proaches. IEEE Data Eng. Bull., 23(4):3–13, 2000.

[32] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data
cleaning system. In VLDB, vol. 1, pp. 381–390, 2001.

[33] S. Salloum, J. Z. Huang, and Y. He. Exploring and cleaning big data
with random sample data blocks. Journal of Big Data, 6(1):1–28, 2019.

[34] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
lite: A grammar of interactive graphics. IEEE Transactions on Visual-
ization & Computer Graphics (Proc. InfoVis), 2017. doi: 10.1109/tvcg.
2016.2599030

[35] J. Scheffer. Dealing with missing data. 2002.
[36] C. D. Sutton. Computer-intensive methods for tests about the mean

of an asymmetrical distribution. Journal of the American Statistical
Association, 88(423):802–810, 1993.

[37] J. Van den Broeck, S. A. Cunningham, R. Eeckels, and K. Herbst. Data
cleaning: detecting, diagnosing, and editing data abnormalities. PLoS
Med, 2(10):e267, 2005.

[38] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Polyzotis.
Seedb: Efficient data-driven visualization recommendations to support
visual analytics. Proc. VLDB Endow., 8(13):2182–2193, Sept. 2015.
doi: 10.14778/2831360.2831371

[39] L. Visengeriyeva and Z. Abedjan. Metadata-driven error detection. In
Proceedings of the 30th International Conference on Scientific and
Statistical Database Management, pp. 1–12, 2018.

[40] J. Walny, C. Frisson, M. West, D. Kosminsky, S. Knudsen, S. Carpen-
dale, and W. Willett. Data changes everything: Challenges and oppor-
tunities in data visualization design handoff. CoRR, abs/1908.00192,
2019.

[41] R. Wan, R. Garnett, and A. Ottley. Learning and anticipating future
actions during exploratory data analysis. CoRR, abs/1809.09664, 2018.

[42] K.-C. Wang, K. Lu, T.-H. Wei, N. Shareef, and H.-W. Shen. Statistical
visualization and analysis of large data using a value-based spatial
distribution. In 2017 IEEE Pacific Visualization Symposium (PacificVis),
pp. 161–170, 2017. doi: 10.1109/PACIFICVIS.2017.8031590

[43] M. L. Waskom. seaborn: statistical data visualization. Journal of Open
Source Software, 6(60):3021, 2021. doi: 10.21105/joss.03021

[44] H. Wickham and M. H. Wickham. The ggplot package, 2007.
[45] L. Wilkinson. The grammar of graphics. In Handbook of computational

statistics, pp. 375–414. Springer, 2012.
[46] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,

and J. Heer. Voyager: Exploratory analysis via faceted browsing of
visualization recommendations. IEEE Transactions on Visualization

and Computer Graphics, 22(1):649–658, 2016. doi: 10.1109/TVCG.
2015.2467191

[47] Y. Yokomizu, Y. Kito, and T. Matsumura. Approximate numerical
method for deriving an asymmetrical distribution of radiation intensity
in a gas blasted arc. gas fukitsuke arc ni okeru hitaishona hosha kyodo
bunpu no kinji kyukai shuho. Denki Gakkai Ronbunshi, B (Transactions
of the Institute of Electrical Engineers of Japan);(Japan), 110(7), 1990.

https://doi.org/https://doi.org/10.1016/j.ijmedinf.2018.05.003
https://doi.org/https://doi.org/10.1016/j.ijmedinf.2018.05.003
https://doi.org/https://doi.org/10.1016/j.ijmedinf.2018.05.003
https://doi.org/https://doi.org/10.1016/j.ijmedinf.2018.05.003
https://doi.org/https://doi.org/10.1016/j.ijmedinf.2018.05.003
https://doi.org/https://doi.org/10.1016/j.ijmedinf.2018.05.003
https://doi.org/https://doi.org/10.1016/j.ijmedinf.2018.05.003
https://doi.org/https://doi.org/10.1016/j.ijmedinf.2018.05.003
https://doi.org/10.1016/j.ijmedinf.2018.05.003
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.14778/2831360.2831371
http://arxiv.org/abs/1908.00192
http://arxiv.org/abs/1908.00192
http://arxiv.org/abs/1908.00192
http://arxiv.org/abs/1908.00192
http://arxiv.org/abs/1908.00192
http://arxiv.org/abs/1908.00192
http://arxiv.org/abs/1908.00192
http://arxiv.org/abs/1809.09664
http://arxiv.org/abs/1809.09664
http://arxiv.org/abs/1809.09664
http://arxiv.org/abs/1809.09664
http://arxiv.org/abs/1809.09664
http://arxiv.org/abs/1809.09664
https://doi.org/10.1109/PACIFICVIS.2017.8031590
https://doi.org/10.1109/PACIFICVIS.2017.8031590
https://doi.org/10.1109/PACIFICVIS.2017.8031590
https://doi.org/10.1109/PACIFICVIS.2017.8031590
https://doi.org/10.1109/PACIFICVIS.2017.8031590
https://doi.org/10.1109/PACIFICVIS.2017.8031590
https://doi.org/10.1109/PACIFICVIS.2017.8031590
https://doi.org/10.1109/PACIFICVIS.2017.8031590
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191

	Introduction
	Related Work
	Design Goals
	Architecture
	Methods
	Improved Design
	Duplicate Entry Check
	Improved Outlier and Asymmetrical Distribution Detection
	Axis-aligned Spread Check
	User Interactions

	Evaluation
	Results
	Analyzing Overall User Experience
	Examining Example Dataset Survey Responses
	Comparison to Previous Study

	Discussion and Future Work
	Takeaways
	Limitations
	Future Work

	Conclusion
	Team Member Contributions

